
Presented at IS&T/SPIE EI’96, Conference 2660: Document Recognition III
pp. 160-174, Jan. 29-30, 1996, San Jose, CA.

Textured reductions for document image analysis

Dan S. Bloomberg

Xerox Palo Alto Research Center
Palo Alto, CA 94304

ABSTRACT

A particularly effective method for analyzing document images, that consist of large numbers of bi-
nary pixels, is to generate reduced images whose pixels represent enhancements of textural densities in
the full-resolution image. These reduced images are generated using an integrated combination of filter-
ing and subsampling. Previously reported methods used thresholding over a square grid, and cascaded
these threshold reduction operations. Here, the approach is generalized to a sequence of arbitrary filter-
ing/subsample operations, with emphasis on several particular filtering operations that respond to salient
textural qualities of document images, such as halftones, lines or blocks of text, and horizontal or vertical
rules. As with threshold reductions, these generalized “textured reductions” are performed with no regard
for connected components. Consequently, the results are typically robust to noise processes that can vitiate
analysis based on connected components. Examples of image analysis and segmentation operations using
textured reductions are given. Some properties can be determined very quickly; for example, the existence
or absence of halftone regions in a full page image can be established in about 10 milliseconds.

Keywords: textured reduction, image analysis, image segmentation, multiresolution morphology, image
morphology, image reduction, threshold reduction, page segmentation

1 Introduction

Linear filters commonly used for segmentation of natural scenes, such as Gabor filters, have been
used to segment grayscale document images.7 Features derived from the filtered image, that represent
characteristic document textures, are used in a classifier to determine text and image regions. On a per-
pixel basis, these techniques are computationally intensive, and are most applicable for low-resolution
images with highly variable lighting; e.g., captured by a camera. For scanned images with controlled
illumination, nonlinear operations on binary images are most effective.

Accurate binary page segmentation systems are required to work at a number of different resolutions,
1

with the finest resolution typically in the range 75 to 150 ppi. The choice of resolution reflects a strong
resource/accuracy trade-off, because the memory requirements scale as the square of the resolution, and
for some operations (e.g., morphological) the time scales roughly as the third power.

Several systems for page segmentation of binary document images4,2 have been described that analyze
low resolution versions of the scanned images for efficiency. The analysis is more reliable if the subsam-
pling of the full resolution image is preceeded by nonlinearbinary filtering. The filter choices depend on
the specifics of the analysis to be performed at low resolution. Most filters, such as morphological and
rank order, are translationally invariant (TI). Each pixel in the image is modified by same rule involving
pixels in its neighborhood. However, if the filtering is followed by subsampling, which is a translationally
variant operation, only the pixels to be subsampled need to be altered by the filter. Consequently, it is
much more efficient to combine the filtering and subsampling operations.

Studies on the relation between subsampling and morphological operations on binary images have been
used to characterize the magnitude of errors (expressed as apixel distance) obtained when reconstructing
high resolution images from subsampled ones, and when operating in the subsampled domain instead of
the high-resolution domain.5,6 The reconstruction structuring elements used were small low-pass filters.
Our concern for fidelity of the relationship between high andlow resolution images is different. We are
interested in filtering operations that enhance particulartextures and de-emphasize others. These filters
are highly distorting, and would be utterly useless in reconstruction applications. They are selected for
both large enhancement and some degree of specificity.

Threshold reductions by 2x have been used to construct binary image pyramids, where a pixel at each
level is computed from a threshold of the sum of ON pixels in the level above.10,11 The threshold reduction
operation is a combination of a specific rank order filter followed by subsampling, where the filter size is
identical to the size of the subsampling tile. An efficient combination of filtering and subsampling was
introducted as a cascade of 2x threshold reductions.1 Such a cascade of threshold reductions provides
sufficient texture-projection flexibility for most applications in document image analysis.2 “Texture” is
used here to refer to any pixel patterns established over a region that is larger than a characteristic distance
of the pattern. This is to be interpreted broadly to describeall relations between image pixels, irrespective
of the connectedness of the underlying components. Using threshold reductions, reduced images are
generated quickly, and each pixel in the reduced image is determined by an (often large) set of neighbors.
In such a cascade, about 70 percent of the computation occursin the first 2x reduction. The speed of a 2x
reduction on a Sun 10 is about 2 source image pixels per clock cycle, for any of the four thresholds.

In this paper we explore related but significantly faster filter/subsampling reductions. These are prac-
tical because many of the salient features in an image, such as halftones, lines, and lines of text, have
an underlying texture that is manifest at resolutions well below 75 ppi. Because the action of the fil-
tering/subsampling operation is to label output pixels by some textural property in the vicinity of the
corresponding high resolution source pixels, we call the general class of such operationstextured reduc-
tions. Thus, threshold reductions and their cascades are a particular class of textured reductions. The
new textured reductions considered here are faster than thethreshold reductions for two reasons: they use
larger subsampling, and in some cases the filtering step is faster. For most of the applications, we use
reductions to 40 and 20 ppi, thus gaining about an order of magnitude in speed over similar analysis using
threshold reductions.

To segment page images, these scale-changing textured reductions must be combined with other
texture-projecting nonlinear operations at constant scale. This is a classification problem, implemented
entirely with image-based operations. Ideally, for each region of interest, a set of operations can be found
that will project out all pixels of this chosen type (e.g., text lines) and no pixels from any other image
regions.

1.1 Plan of the paper

In Section 2, the textured reductions are defined. The aliasing properties are described, and conditions
for which no aliasing occurs are found. Examples of the action of the most simple textured reductions
that produce no aliasing in at least one direction are given at different resolutions, to show their texture-
projecting effects. Then in Section 3, we show how these operations can be used in conjunction with
morphological operations to perform fast but coarse segmentation analysis. The trade-off here is mostly
between spatial accuracy, which is limited by the degree of subsampling, and the amount of calculation
required. Finally, in Section 4, we describe efficient implementations for these new operations.

2 Textured reduction operations

Textured reductions are translationally variant reductions, that are implemented efficiently using a
translationally variant filter before subsampling. We consider only specific textured reductions that have
the following properties:� Operations are on binary images.� All filtering operations are simply implemented as logical operations on pixels. This restriction is

chosen for efficiency, supported by aliasing considerations.� The subsampling is isotropic. This is not a significant limitation in the use of these reductions,
because we can choose different horizontal and vertical filters.� All filtering operations act only within each square subsampling tile. This is not a substantial re-
striction, as is shown below in the discussion of aliasing.� The filters are separable. This simplifies the implementation with little loss of flexibility.� The filters are identical for each tile. When the filter does not touch every pixel in a tile, the set of
pixels can be varied to more randomly sample the image. This is usually not necessary.� Subsampling is by power-of-2. This is chosen for computational efficiency only.

2.1 Aliasing

Any subsampling operation has the potential to cause aliasing, which can manifest itself as a low
frequency pattern in the subsampled image (or, often, as thedisappearance of image components with a
small dimension.) Aliasing thus introduces a texture pattern into the reduced image that did not exist in
the original image, and this can cause problems in segmentation when these patterns mimic textures that
are characteristic of different document regions.

Aliasing can be mitigated or even entirely removed by lowpass filtering. We investigate here the
conditions under which a binary image can be filtered before subsampling to prevent aliasing. We will
see later that some alias-producing filters are desirable because (1) the artifacts can be filtered to prevent
segmentation errors and (2) these filters have particularlyefficient implementations.

Aliasing from a frequency component of a continuous signal occurs when the sampling distance is
greater than half the wavelength. The analog in the fully discrete domain, where a discrete signal is
subsampled at integer pixel intervals, is that aliasing will occur if there are any wavelengths less than
twice this sampling distance. Conversely, if the image is filtered to remove these frequency components,
aliasing will not occur. Consider filtering and subsamplingin one direction, onN � 1 tiles. After filtering,
a pixel will be chosen for subsampling. We restrict the filterto act over each set ofN pixels. What
filters are guaranteed to prevent aliasing? Clearly if the filter doesn’t alter the sampled pixel, aliasing will
occur. Likewise, if the filter does not involve allN pixels, aliasing will be present for some set of signals.
For example, suppose the filter does not use a specific pixel ineach tile. Then a signal based only on
those pixels would be missed. Consequently, to prevent aliasing it is necessary to sample allN pixels.
Additionally, it is necessary to weight all pixels equally in the filter; otherwise, specific signals will be
given inappropriate emphasis. We considerrank order filters, which are a particular subset of the class of
filters that weight allN pixels in the tile equally. The output from a rank order filteris 1 if m or more of
theN pixels are ON, where1 � m � N , and 0 otherwise.8 Most rank order filters will show aliasing for
arbitrary signals, as can seen from the following argument.Suppose the pixel pattern has an underlying
half wavelengthL < N , by which, in the digital domain for binary images, we mean a repeating pattern
of L pixels ON followed byL OFF. Consider first the case whenL is an integer. Inspection of a few cases
shows that the number of ON pixels in each tile will vary with tile (i.e., with the phase of the underlying
signal) unlessN mod L = 0 andN=L is even. In general, the variation in number of ON pixels in a tile
varies betweennmin(N;L) andnmax(N;L), where1 � nmin(N;L) � nmax(N;L) < N; (1)nmin(N;L) = (Lb N2L
 bN=L
evenLb N2L
+N mod L bN=L
odd (2)

and for allL, nmin(N;L) + nmax(N;L) = N (3)

The variation in the number of ON pixels in a tile, which givesthe strength of the aliasing signal, is thenv(N;L) = nmax(N;L)� nmin(N;L) = N � 2nmin(N;L) (4)

Some values for this aliasing signal are given in the table below:N L v(N;L) N L v(N;L) N L v(N;L) N L v(N;L)
3 1 1 6 2 2 8 1 0 10 4 2
3 2 1 6 3 0 8 2 0 10 5 0
4 1 0 6 4 2 8 3 2 16 1 0
4 2 0 6 5 4 8 4 0 16 2 0
4 3 2 7 1 1 8 5 2 16 3 4
5 1 1 7 2 1 8 6 4 16 4 0
5 2 1 7 3 1 8 7 6 16 5 4
5 3 1 7 4 1 10 1 0 16 6 4
5 4 3 7 5 3 10 2 2 16 7 2
6 1 0 7 6 5 10 3 2 16 8 0

Note that the maximum variation,vmax, always occurs whenN � L = 1, so thatN is as close toL as
possible, and is of magnitude vmax(N;L) = v(N;N � 1) = N � 2 (5)

The period of the alias signal,p(N;L), is conveniently defined in units of tiles to be the distance in
tiles required for the signal to repeat itself. It is easily seen thatp is related to the amplitudev of the
aliasing signal by p(N;L) = v(N;L) + 1 (6)

So for a signal with no aliasing,v(N;L) = 0 and the value of the signal is equal in every tile.

If L is not an integer but is still less than the integerN , the signal (i.e., the number of ON pixels in the
tiles) will vary in an aliased fashion, from tile to tile, forall values ofL and in a range given by (1) and
with a period given by (6). In the limit thatL approaches the sampling distanceN , the signal variation
approachesN but the period goes to infinity. Now, if the number of ON pixelsin a tile varies, and a rank
order filter is used with a threshold larger than the minimumnmin(N;L) but at or below the maximumnmax(N;L), then the result for the tiles will vary with a low-frequencyaliased signal.

The condition for filters that produce no aliasing for any underlying signal is now apparent. We must
use a rank order filter that has a threshold outside these limits for any possible underlying signalL. This
filter must have either have a rank value equal to the smallestpossible value ofnmin(N;L) or larger than

Figure 1: Vertical textline aliasing at decreasing sampling rate.

the largest possible value ofnmax(N;L). There are only two choices that satisfy this condition for allL: m = 1 andm = N . The threshold must thus be chosen at the extreme values, equivalent to using a
dilation or erosion operator with a linear solid structuring element equal to the tile sizeN .

These results can be extended to two dimensions. The condition for no aliasing is whenrank filters
with extreme thresholds are used over every pixel in the two-dimensional tile. For anN � N tile, the
threshold values arem = 1 andm = N2. Additionally, for signals that vary only in the horizontalor
vertical directions, separable rank filters with (possiblydifferent) extreme threshold values in each direc-
tion are non-aliasing. This condition is applicable to document images, which tend to have the frequency
distribution of the image concentrated in horizontal and vertical directions. So for example, under those
image conditions a separable filter using rank valuem = 1 in the horizontal direction andm = N in the
vertical direction will be non-aliasing.

To compare the performance of subsampling without filters and with non-aliasing filters, consider
again a square wave signal of periodicity2L. Define theNyquist sampling raterN to be when a sample
is taken at everyL pixels. When samplingabovethe Nyquist rate, samples are taken at intervalsless thanL pixels, and v.v. Non-aliasing filters sampled belowrN have only a d.c. frequency response: they give
either black (m = 1) or white (m = N). As rN is approached from above, there is first a loss of strict
periodicity at a sampling rate of about2rN , and nearrN the solid regions are extended. On the other hand,
when no filtering is done, there is distortion but no loss of signal bands aboverN . Aliasing begins belowrN , but the signal first gets a significant d.c. component when the sampling rate decreases to0:5rN . This
is half the sampling rate when the non-aliasing filters get their (permanent) d.c. response. As the rate is
lowered further, the response continues to vary.

Fig. 1 shows the effect of vertical aliasing, where only a single row of pixels is sampled in each tile.
The sampling rate decreases from (1) to (8). It is well aboverN in (1), decreases to approximatelyrN at
(4), and0:5rN in (7). Note that the size, spacing and location of the black blocks is highly unpredictable
for such very low sampling rates. However, aliasing filters are useful if we stay well above0:5rN . For
textlines shown here, typical vertical spacing is about 8 lines/inch, sorN is 16/inch, and we must sample
well above 8/inch to avoid highly variable results. Morphological filtering after the textured reduction,
using closings and openings in the vertical direction, can be used to reduce aliasing effects. Examples are
given in Sec. 2.2.

2.2 Simple filters

In this section we consider simple filters that use extreme rank filtering to avoid aliasing in at least one
direction. In all cases, we consider a tile of sizeN �N , from which a single pixel will be produced in the
reduced image. Both horizontal and vertical filters can use rank of either 1 orN .

For one-dimensional filters, where only a single row or column of each tile is used, there are four
possibilities. The horizontal filters of rank 1 andN that test pixels in a single row are denotedHO, HA,
respectively. The subscriptsO andA represent “OR” and “AND”, because these binary logical operations
between pixels in the row implement the respective rank filter. Vertical filters that test pixels in a single
column are likewise denotedVO andVA. These are anti-aliasing in the filter direction, but aliasing occurs

in the orthogonal direction because of the subsampling.

The results from separable two-dimensional filters depend,in general, on the order of the filtering
operation. There are four completely anti-aliasing two-dimensional filters, that sample the entire tile, and
that do the vertical sampling before the horizontal sampling. These are denotedDO;O, DO;A, DA;O andDA;A, where the first and subscripts indicate horizontal and vertical filtering, respectively. If it is necessary
to indicate the subsampling factor (or tile size), it is placed as a superscript to the operator; e.g.,D16O;O.

There are a similar set of two-dimensional filters that do horizontal subsampling first. However,DO;O
andDA;A are independent of the sampling order, so there are only two additional filters, denoted̂DO;A andD̂A;O, for which the horizontal filtering is done before the vertical filtering. Of these six two-dimensional
non-aliasing filters, the first four are considerably more efficient to implement for subsampling values
greater than 4, which are of most interest here. Consequently, in the examples that follow we show results
of only the fourD operations. The efficiency of these operations is discussedin Sec. 4.

Some of the simplest filtering operations are implicit, or nearly so, in that few or no pixel operations
are actually performed. For example,H8O can be implemented by checking if there are any pixels on in a
single row of the tile, using a machine instruction that tests if a byte has value 0.

The eight simple one-dimensional and two-dimensional textured reductions are shown in Fig. 2 for 8x,
as applied to a fairly complicated page image that was scanned at 300 ppi. The reduced images are thus
sampled at about 40 ppi, with reference to the original image. It is useful to consider the document image
features, projected as texture patterns, that are salient in these images. In particular, different operations
project vertical rules, horizontal rules, text as textblocks components, text as well-defined and connected
textlines, text as small character-sized components with different degrees of separation, text as tiny dense
noise, text as whitespace, halftones as solid regions, halftones as the only projected component, etc. The
2D anti-aliasing filters give particularly uniform (and different) results for the different image regions. For
comparison, results sampled at about 20 ppi are shown in Fig.3. Even at this low resolution, textures with
regular characteristics and useful differences are reliably projected.

When should the one-dimensional and two-dimensional reduction operators be chosen? The one-
dimensional horizontal operations are the fastest, because only a single row is filtered; all others require
reading every pixel in the tile. Fortunately, the vertical aliasing caused byHO andHA are relatively
unimportant for several important textures found in page images: halftones, text lines and vertical lines.
For halftones,HO will typically generate a (nearly) solid response when the sampling rate is below 60 ppi,
regardless of the screen angle. Text lines rarely have a vertical frequency in excess of 10 ppi, so use ofHO
andHA above 20 ppi results in no appreciable vertical aliasing. Even if some vertical aliasing occurs, the
result is only an inaccuracy in the observed text line frequency. The texture of the reduced image retains
the appearance of text lines, along with its textural signature, given by sets of horizontal raster lines with
ON pixels followed by lines without ON pixels. Finally, vertical lines that are longer than the tile size will
be projected out byHO andHA without loss of information, compared to the more expensiveuse ofDO;A
orDA;A.

Figure 2: The eight most simple 8x textured reductions, applied to a 300 ppi image.
In the first row,H8O, H8A, V 8O andV 8A. In the second row,D8O;O, D8O;A,D8A;O andD8A;A.

Figure 3: The same eight textured reductions as in Fig. 2, but here at 16x reduction
(about 20 ppi). TheH16 andV 16 operators are in the first row; theD16
in the second.

3 Image analysis

In conjunction with morphological filters,9 textured reductions can be used to segment pages into
regions of different texture, such as halftones, line art, and text. In this section, examples are given for
these operations. The results are not as good as with carefully cascaded threshold reductions, but here we
interested in the types of qualitative information that canbe obtained quickly.

3.1 Use of the simple filters

The quality of the analysis depends on the subsampling, withrespect to the actual scanned image. For
example, results on a 600 ppi image using a 16x textured reduction should be similar to those on a 300 ppi
image using an 8x reduction, because both project out texture at approximiately 40 dpi. Consequently, in
this section, we describe the results in terms of the sampling frequency with respect to the original scan in
inches, rather than giving the actual reduction factor used. Also, to describe the morphological operations
in a way that is independent of the original scanning resolution, the approximate size of each structuring
element is given in inches on the original page. For example,a 1.0 inch SE on an image subsampled at 20
ppi is 20 pixels long.

Fig. 4 shows some analysis at 40 ppi. The images are numbered from left to right and top to bottom.
(1) is a reduced representation of the original image; we produced it with a sequence of level 2 threshold
reductions to give a good visual appearance. (2) is producedwith VO, followed by a large horizontal
opening (1.2 inch). Likewise, (3) is produced withHO followed by a large (1 inch) vertical opening. The
halftone seed in (4) is made withDA;A, followed by a very small square opening (0.1 inch). The halftone
clipping mask in (5) is made withDO;O. A filling operation from (4) into (5) gives the halftone regions in
(6). The actual horizontal lines in (7) are found by subtracting (6) from (2), and the vertical lines in (8) are
found by subtracting (6) from (3). (9) shows the vertical whitespace, found by photometrically inverting
(1) and doing a large (1.2 inch) vertical opening. The rough text regions in (10) are found by subtracting
(6) fromHO and closing with a moderately small (0.25 in) horizontal SE.This is cleaned up in (11) by
subtracting out the halftones (6) again, as well as the horizontal and vertical lines; the result is opened
with a moderately large (0.5 inch) horizontal SE, the vertical whitespace is subtracted, and then opened
again with a small (0.2 inch) horizontal SE. This sequence makes reasonably nice text regions for all of
the images tested. Finally, the text regions can be blocked up in (12) by opening with a tiny (0.05 inch)
vertical SE to remove noise, and then doing a closing/opening with a small (0.2 inch) vertical SE.

These results can be compared with similar ones in Fig. 5 at 20ppi. At lower resolution, there is more
noise, particularly in the horizontal and vertical lines that are extracted. At 40 ppi, these lines correspond
exactly to the rules in the original image, but at 20 ppi, extraneous lines and noise are introduced.

Extraction of halftone images, horizontal and vertical lines, and text lines is quite reliable at 40 ppi.
Typical results for these elements are shown in Fig. 6, for images with diverse layout characteristics and
using the filter sizes and sequences described for Fig. 4.

Figure 4: 12 steps in component analysis at 40 ppi

Figure 5: 12 steps in component analysis at 20 ppi

Figure 6: Four examples from images with diverse elements and layout,at 40 ppi.
For each the input image and derived halftone regions, horizontal lines,
vertical lines, and text lines are shown.

3.2 Use of the horizontal filters

The horizontal filtersHO andHA have a special role by virtue of their speed (see Section 4 fordetails).
Because there is no vertical filtering, they exhibit vertical aliasing from vertical structure with frequency
above the Nyquist limit. Nevertheless, they are useful for avariety of tasks:� Halftone detection. Halftone screens are usually tilted, and have screen frequencies of 60 ppi or

greater, corresponding to Nyquist frequencies well above 100 ppi. With subsampling at or below 40
ppi (far from the Nyquist limit), aliasing can occur, but with small amplitude. As a result, halftone
regions typically give a solid response. UseHA, followed by a close/open combination to remove
noise.� Textline detection. Textlines typically have a vertical frequency less than 10ppi, so no aliasing is
expected for sampling above 20 ppi. See, however, the aliasing example in Section 2.2. The result ofHO is horizontal lines, that may contain inter-word gaps above30 ppi. These gaps can be solidified
by a small horizontal closing. Textlines are easily distinguished from halftone regions; because of
the vertical line texture, they can be removed with a small vertical opening.� Vertical rule detection. These are projected byHO without loss, and can be distinguished from
textlines with a small vertical opening.� Horizontal rule detection. Rules of width greater than the sampling distance will be preserved byHA, and preferentially projected byHA followed by a large horizontal opening. Narrow rules can
be lost due to vertical subsampling. However, if theHA reduction is done ondifferentraster rows
in each tile within a horizontal row of tiles, thin horizontal rules will be projected from those tiles
where the sampling coincides with the rule, resulting in a broken line.� Multiple column detection. UseHO, followed by bit inversion and a vertical opening. This will
leave vertical lines in the left and right margins, as well asbetween any text columns in the image.� Text orientation. HO can be used to detect text of either portrait or landscape orientation. UnderHO, landscape text is rendered into broken vertical lines, where the words and often the characters
are separated. A vertical opening will remove this texture,but preserve vertical rules. Alternatively,
vertical runlength analysis can be used to identify this salient textural characteristic.� Image processing for skew detection. When using bitmap variance statistics for analyzing skew3
on reduced images,HO is particularly effective for subsampling because it emphasizes the horizontal
nature of the text-lines, as is apparent from the results in Fig. 2 and Fig. 3. This emphasis boosts the
differential signal, allowing accurate skew detection from a smaller number of textlines.

4 Implementations

After filtering (horizontal, vertical or both), rows and columns must be subsampled. Column subsam-
pling is the most expensive, and requires some care. Some generic and conflicting guidelines can be given

for efficient implementation of image operations on a general purpose 32-bit computer:

1. Operate on 32-bit words to the maximum degree possible. The goal is to retire source or destination
words with the minimum number of operations. For power-of-2reductions, 32-bit source words are
compressed into 16 or smaller bit destination chunks.

2. Register operations are very fast. Maximize use of register shifts and register logical operations.
The most common operations are mask (logical AND), shift, and OR.

3. Consider using only small tables (256 or less). Small tables can be made quickly when needed, and
have a much higher cache hit rate than, for example, 16-bit tables. This can compensate for the
larger number of table lookups required for smaller tables.

4. Minimize table lookups. Table lookups are relatively expensive. The number of lookups is mini-
mized by using all bits in the table.

5. Unroll loops involving 32-bit writes to the destination.Unrolling loops reduces the number of
test/branches, and can be used to minimize writes to memory.

6. Minimize writes to memory. The cost of writing to memory ishighest on systems such as the Sun
SPARC, that write through the cache and take 11 cycles.

Within these guidelines, several efficient implementations of column subsampling possible. We men-
tion two different types. In both, results for at least 32 bits of destination image are always stored into a
register before being written to memory.

The first method typically determines several destination pixels at a time, and is more efficient for
smaller tiles, such as2 � 2 or 4 � 4. The source words are optionally filtered using intra-tile shifts and
logical operations to set the value of the pixel in each tile (or tile row) that will be subsampled. For
example,HA uses AND operations between shifted pixels, without masking. Subsampling is then done
by first applying a comb mask with the subsampling periodicity to project these pixels in a source word.
The word is then successively shift/ORed to make all subsampling pixels contiguous. For example, a 4x
subsampling requires two sequential shifts (of 15 bits and 6bits) to compress the 8 selected pixels in a
32-bit word into a contiguous byte. A 256-entry table lookuppermutes them back into the original order.
Four of these operations can be placed in-line to construct the pixels in a full destination word. Threshold
reduction1 by 2x (or greater) can be implemented in this way. The filtering part is very fast; most of
the computation is in the subsampling (the extraction of thefiltered pixels). Consequently, a 2xtextured
reduction is not significantly faster than a 2xthresholdreduction.1

The second method uses no table lookups, and it is more efficient for non-aliasing textured reductions
with tile sizes8�8 or larger. Source words are optionally filtered, and then progressively shifted, masked,
and tested. Consider theHO andHA operations. No explicit filtering is necessary. ForHO, the pixels in
successive tiles are projected from the source word (by shift and mask). This is tested and if nonzero, the1In fact, the 2x threshold reduction for levels 1 and 4 are identical toDO;O andDA;A, respectively, and the level 2 and 3
threshold reductions are equivalent to(D2O;A [D2A;O) and(D2O;A \D2A;O), respectively.

corresponding pixel is turned on in the reduced destination. ForHA, the projected tiles are compared with
the mask, and if equal, the destination pixel is turned on. All these operations on source and destination
words take place in registers.

If filtering is required, this is done by a shift followed by a logical operation. Suppose instead ofHO
we wish to check whether either of two specific pixels in each tile are ON. First shift and OR to put the
result for each tile in a single pixel of that tile. Then carryout the shift/mask/test procedure given above,
using a mask that covers only the result pixel, not the entiretile.

We see now why the large tile two-dimensional textured reductions are more efficient when the vertical
filtering preceeds the horizontal filtering and subsampling. The reason is that the vertical operations,
requiring only logical operations between 32-bit words, are much faster than the shift/mask/test horizontal
ones that do the subsampling.

The speed of theH operators on a 40 MHz Sparc 10 is given in the second column of the following
table. For example, anH16A reduction on an8:5 � 11 inch page scanned at 300 ppi takes 8 milliseconds.
This can be followed by a quick erosion of the reduced image tomake a decision if any halftones existed
in the original 8 million pixel image. The third column givesthe number of source pixels retired in each
machine cycle.

Reduction Source Mpixels/secSource pixels/cycle
8x 270 7
16x 1000 25
32x 3200 80

5 Summary

A special class of binary image reduction operations, that includes filtering, has been introduced. We
have derived conditions under which no aliasing occurs in atleast one direction, and described the special
textured reduction operators that work under these conditions. These operations can be implemented effi-
ciently because the filtering and subsampling operations are combined. Filtering operations for which no
aliasing occurs require sampling over all pixels in each tile. When sampling over the tiles is not complete,
some degree of aliasing is introduced. This is often allowable, because for particular types of texture
found in document page images, errors in projected texture can be removed in later processing stages.
The engineering trade-off with incomplete sampling is between introduction of aliasing and faster imple-
mentations. We have shown that fast textured reductions canbe used to obtain quickly page segmentation
information describing the salient textural regions of page images. For more accurate page segmentation
implementations, it is often useful to have information such as whether or not there are halftone images and
text regions, and if there is text, if it exists in single or multiple columns. For these applications, theHO
andHA textured reduction operators are the most interesting because of their efficient implementations.

6 REFERENCES

[1] D. S. Bloomberg, “Image analysis using threshold reduction,” SPIE Conf. on Image Algebra and
Morphological Image Processing II, Vol. 1568, San Diego, CA, July 1991, pp. 38-52.

[2] D. S. Bloomberg, “Multiresolution morphological analysis of document images”,SPIE Conf. 1818,
Visual Communications and Image Processing ’92, Boston, MA, pp. 648-662, Nov 18-20, 1992.

[3] D. S. Bloomberg, G. E. Kopec and L. Dasari, “Measuring document image skew and orientation”,
SPIE Conf. 2422, Document Recognition II, San Jose, CA, pp. 302-316, Feb 6-7, 1995.

[4] P. J. Bones, T. C. Griffin, and C. M. Carey-Smith, “Segmentation of document images,”SPIE Symp.
on Electronic Imaging Science and Technology, Vol. 1258, Feb. 1990.

[5] R. M. Haralick, C. Lin, J. Lee, X. Zhuang, “Multi-resolution morphology,”Int. Conf. on Computer
Vision, London,pp. 516-520, June 1987.

[6] R. M. Haralick, X. Zhuang, C. Lin and J. Lee, “Binary Morphology: Working in the Sampled Do-
main,” CVPR ’88, Ann Arbor, MI,pp. 780-791, June 1988.

[7] A. K. Jain and S. Bhattacharjee, “Text segmentation using Gabor filters for automatic document
processing,”Machine Vision and Appl,Vol 5, pp. 169-184, 1992.

[8] P. Maragos and R. W. Schafer, “Morphological Filters - Part II: Their Relations to Median, Order-
Statistic, and Stack Filters,”IEEE Trans. Acoust. Speech Signal Process., ASSP-35, pp. 1170-1184,
Aug. 1987.

[9] J. Serra,Image Analysis and Mathematical Morphology, Acad. Press, 1982.

[10] S. L. Tanimoto, “A hierarchical cellular logic for pyramid computers”,J. Parallel and Distributed
Computing,Vol 1, pp. 105-132, 1984.

[11] S. L. Tanimoto, “Paradigms for pyramid machine algorithms”, in Pyramidal Systems for Computer
Vision,ed. V. Cantoni and S. Levialdi, NATO ASI Series, Vol. F25, pp.173-194, Springer Verlag,
1986.

