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ABSTRACT

A particularly effective method for analyzing document gea, that consist of large numbers of bi-
nary pixels, is to generate reduced images whose pixelsgsept enhancements of textural densities in
the full-resolution image. These reduced images are geteusing an integrated combination of filter-
ing and subsampling. Previously reported methods usedhblging over a square grid, and cascaded
these threshold reduction operations. Here, the appr@agénieralized to a sequence of arbitrary filter-
ing/subsample operations, with emphasis on several phatifiltering operations that respond to salient
textural qualities of document images, such as halftomess bor blocks of text, and horizontal or vertical
rules. As with threshold reductions, these generalizexttted reductions” are performed with no regard
for connected components. Consequently, the results ity robust to noise processes that can vitiate
analysis based on connected components. Examples of imabysia and segmentation operations using
textured reductions are given. Some properties can bendigied very quickly; for example, the existence
or absence of halftone regions in a full page image can bélestad in about 10 milliseconds.

Keywords: textured reduction, image analysis, image segmentatiaitiresolution morphology, image
morphology, image reduction, threshold reduction, pagensaitation

1 Introduction

Linear filters commonly used for segmentation of naturahese such as Gabor filters, have been
used to segment grayscale document imagésatures derived from the filtered image, that represent
characteristic document textures, are used in a clasgifigetermine text and image regions. On a per-
pixel basis, these techniques are computationally intensind are most applicable for low-resolution
images with highly variable lighting; e.g., captured by anesa. For scanned images with controlled
illumination, nonlinear operations on binary images arenedfective.

Accurate binary page segmentation systemslare requiredrtoava number of different resolutions,



with the finest resolution typically in the range 75 to 150.ppihe choice of resolution reflects a strong
resource/accuracy trade-off, because the memory regeirsnscale as the square of the resolution, and
for some operations (e.g., morphological) the time scalaghly as the third power.

Several systems for page segmentation of binary documexgidd? have been described that analyze
low resolution versions of the scanned images for efficiefitye analysis is more reliable if the subsam-
pling of the full resolution image is preceeded by nonlingaary filtering. The filter choices depend on
the specifics of the analysis to be performed at low resalutMost filters, such as morphological and
rank order, are translationally invariaritl). Each pixel in the image is modified by same rule involving
pixels in its neighborhood. However, if the filtering is fmfed by subsampling, which is a translationally
variant operation, only the pixels to be subsampled neecktaltered by the filter. Consequently, it is
much more efficient to combine the filtering and subsamplpgrations.

Studies on the relation between subsampling and morphealbgperations on binary images have been
used to characterize the magnitude of errors (expressegiagslalistance) obtained when reconstructing
high resolution images from subsampled ones, and when topeera the subsampled domain instead of
the high-resolution domait® The reconstruction structuring elements used were smaplass filters.
Our concern for fidelity of the relationship between high &l resolution images is different. We are
interested in filtering operations that enhance particigatures and de-emphasize others. These filters
are highly distorting, and would be utterly useless in retarction applications. They are selected for
both large enhancement and some degree of specificity.

Threshold reductions by 2x have been used to constructybimage pyramids, where a pixel at each
level is computed from a threshold of the sum of ON pixels ildvel above®!! The threshold reduction
operation is a combination of a specific rank order filterdaid by subsampling, where the filter size is
identical to the size of the subsampling tile. An efficientndmnation of filtering and subsampling was
introducted as a cascade of 2x threshold reductio&sich a cascade of threshold reductions provides
sufficient texture-projection flexibility for most applitens in document image analysis‘Texture” is
used here to refer to any pixel patterns established ovegiaréhat is larger than a characteristic distance
of the pattern. This is to be interpreted broadly to desalbeelations between image pixels, irrespective
of the connectedness of the underlying components. Usirgshbld reductions, reduced images are
generated quickly, and each pixel in the reduced image esmé@ted by an (often large) set of neighbors.
In such a cascade, about 70 percent of the computation oicctims first 2x reduction. The speed of a 2x
reduction on a Sun 10 is about 2 source image pixels per chadk,dor any of the four thresholds.

In this paper we explore related but significantly fasteefliubsampling reductions. These are prac-
tical because many of the salient features in an image, ssittalftones, lines, and lines of text, have
an underlying texture that is manifest at resolutions welbty 75 ppi. Because the action of the fil-
tering/subsampling operation is to label output pixels byne textural property in the vicinity of the
corresponding high resolution source pixels, we call theega class of such operatiotextured reduc-
tions Thus, threshold reductions and their cascades are ayartdass of textured reductions. The
new textured reductions considered here are faster thahréghold reductions for two reasons: they use
larger subsampling, and in some cases the filtering stegsisrfaFor most of the applications, we use
reductions to 40 and 20 ppi, thus gaining about an order ohihade in speed over similar analysis using
threshold reductions.



To segment page images, these scale-changing texturedtimdumust be combined with other
texture-projecting nonlinear operations at constantesc@his is a classification problem, implemented
entirely with image-based operations. Ideally, for eagjia® of interest, a set of operations can be found
that will project out all pixels of this chosen type (e.gxtténes) and no pixels from any other image
regions.

1.1 Plan of the paper

In Section 2, the textured reductions are defined. The atigzioperties are described, and conditions
for which no aliasing occurs are found. Examples of the actibthe most simple textured reductions
that produce no aliasing in at least one direction are givefiff@rent resolutions, to show their texture-
projecting effects. Then in Section 3, we show how theseaijmers can be used in conjunction with
morphological operations to perform fast but coarse seggtien analysis. The trade-off here is mostly
between spatial accuracy, which is limited by the degreaubfampling, and the amount of calculation
required. Finally, in Section 4, we describe efficient inmpéntations for these new operations.

2 Textured reduction operations

Textured reductions are translationally variant redundjahat are implemented efficiently using a
translationally variant filter before subsampling. We édasonly specific textured reductions that have
the following properties:

¢ Operations are on binary images.

¢ All filtering operations are simply implemented as logicpeaations on pixels. This restriction is
chosen for efficiency, supported by aliasing consideration

e The subsampling is isotropic. This is not a significant latign in the use of these reductions,
because we can choose different horizontal and verticatdilt

e All filtering operations act only within each square subshngptile. This is not a substantial re-
striction, as is shown below in the discussion of aliasing.

e The filters are separable. This simplifies the implementaiiih little loss of flexibility.

e The filters are identical for each tile. When the filter doestoach every pixel in a tile, the set of
pixels can be varied to more randomly sample the image. Shisually not necessary.

e Subsampling is by power-of-2. This is chosen for compurati@fficiency only.



2.1 Aliasing

Any subsampling operation has the potential to cause afiasvhich can manifest itself as a low
frequency pattern in the subsampled image (or, often, adif@@pearance of image components with a
small dimension.) Aliasing thus introduces a texture patisto the reduced image that did not exist in
the original image, and this can cause problems in segmemtahen these patterns mimic textures that
are characteristic of different document regions.

Aliasing can be mitigated or even entirely removed by lovgpfitering. We investigate here the
conditions under which a binary image can be filtered befatesampling to prevent aliasing. We will
see later that some alias-producing filters are desiraldause (1) the artifacts can be filtered to prevent
segmentation errors and (2) these filters have particuddiitient implementations.

Aliasing from a frequency component of a continuous sigmaiuos when the sampling distance is
greater than half the wavelength. The analog in the fullgr@i® domain, where a discrete signal is
subsampled at integer pixel intervals, is that aliasind @gtur if there are any wavelengths less than
twice this sampling distance. Conversely, if the image terild to remove these frequency components,
aliasing will not occur. Consider filtering and subsamplimgne direction, onV x 1 tiles. After filtering,

a pixel will be chosen for subsampling. We restrict the fili@ract over each set aV pixels. What
filters are guaranteed to prevent aliasing? Clearly if therfdoesn’t alter the sampled pixel, aliasing will
occur. Likewise, if the filter does not involve all pixels, aliasing will be present for some set of signals.
For example, suppose the filter does not use a specific pixehdh tile. Then a signal based only on
those pixels would be missed. Consequently, to prevergiagiat is necessary to sample all pixels.
Additionally, it is necessary to weight all pixels equalty the filter; otherwise, specific signals will be
given inappropriate emphasis. We considatk order filters which are a particular subset of the class of
filters that weight allV pixels in the tile equally. The output from a rank order filted if m or more of
the NV pixels are ON, wheré < m < N, and 0 otherwis&.Most rank order filters will show aliasing for
arbitrary signals, as can seen from the following argum&uippose the pixel pattern has an underlying
half wavelengthl. < N, by which, in the digital domain for binary images, we meaeeating pattern
of L pixels ON followed byl OFF. Consider first the case whéns an integer. Inspection of a few cases
shows that the number of ON pixels in each tile will vary wilk (i.e., with the phase of the underlying
signal) unlessV mod L = 0 andN/L is even. In general, the variation in number of ON pixels iiflea t
varies between,,,;, (N, L) andn,,., (N, L), where

1 < npin(N, L) < npaz (N, L) < N, Q)
B L{%J | N/L|even
Mnin(N, L) = { L) 4 N mod L (N/L]odd 2)

and for all L,

Nmin (N, L) + Npag (N, L) = N 3



The variation in the number of ON pixels in a tile, which gitkee strength of the aliasing signal, is then

(N, L) = npaz(N, L) = Npin (N, L) = N = 2050 (N, L) 4)

Some values for this aliasing signal are given in the tablevize

N[L[oN,D)[N[L[o(N,D)[N | LTo(N,L)[ N L][v(N,L)
311 1 62| 2 8 1] O 104 2
312 1 63| 0 82| 0 10/5| 0
401 o0 64| 2 83| 2 16(1| 0
412 o0 65| 4 84| 0 16(2| 0
43| 2 711 1 8|5 2 16|3| 4
501 1 712 1 86| 4 |16/4| O
512 1 713 1 8|7 6 16(5| 4
513 1 714 1 1001 0 166 4
54| 3 715! 3 |[10]2]| 2 167 2
61| O 7!6| 5 |10[3| 2 16(8| 0

Note that the maximum variation,,,,,, always occurs whe®W — L = 1, so thatV is as close td. as
possible, and is of magnitude

'UmaI(NaL):U(N:N_l):N_Q (5)

The period of the alias signalp(N, L), is conveniently defined in units of tiles to be the distance i
tiles required for the signal to repeat itself. It is easiyes thatp is related to the amplitude of the
aliasing signal by

p(N,L) = v(N, L) +1 (6)

So for a signal with no aliasing,( NV, L) = 0 and the value of the signal is equal in every tile.

If L is not an integer but is still less than the integérthe signal (i.e., the number of ON pixels in the
tiles) will vary in an aliased fashion, from tile to tile, fail values ofL and in a range given by ( 1) and
with a period given by ( 6). In the limit that approaches the sampling distang€ethe signal variation
approachesv but the period goes to infinity. Now, if the number of ON pixgls tile varies, and a rank
order filter is used with a threshold larger than the minimum, (V, L) but at or below the maximum
nmaz (N, L), then the result for the tiles will vary with a low-frequenalyased signal.

The condition for filters that produce no aliasing for any entging signal is now apparent. We must
use a rank order filter that has a threshold outside thestslianiany possible underlying signdl. This
filter must have either have a rank value equal to the smaltesstible value of.,,.;,,(N, L) or larger than



T
il

ek —'— e T

A L —

SRS PR E——

s mm—————re

- === — e
i = —— F-qm
- —

&

(14

Figure 1 Vertical textline aliasing at decreasing sampling rate.



the largest possible value of,..(N, L). There are only two choices that satisfy this condition fibr a
L: m = 1 andm = N. The threshold must thus be chosen at the extreme valuesakan to using a
dilation or erosion operator with a linear solid structgrelement equal to the tile siZé.

These results can be extended to two dimensions. The comdidr no aliasing is whenank filters
with extreme thresholds are used over every pixel in thediweensional tile For anN x N tile, the
threshold values are» = 1 andm = N2. Additionally, for signals that vary only in the horizontai
vertical directions, separable rank filters with (possitlifferent) extreme threshold values in each direc-
tion are non-aliasing. This condition is applicable to doemt images, which tend to have the frequency
distribution of the image concentrated in horizontal andieal directions. So for example, under those
image conditions a separable filter using rank value- 1 in the horizontal direction angh = N in the
vertical direction will be non-aliasing.

To compare the performance of subsampling without filteis &ith non-aliasing filters, consider
again a square wave signal of periodicd¥. Define theNyquist sampling ratey to be when a sample
is taken at every. pixels. When samplingbovethe Nyquist rate, samples are taken at interlegds than
L pixels, and v.v. Non-aliasing filters sampled belowhave only a d.c. frequency response: they give
either black {fn = 1) or white (n = N). Asry is approached from above, there is first a loss of strict
periodicity at a sampling rate of abaity, and near y the solid regions are extended. On the other hand,
when no filtering is done, there is distortion but no loss ghal bands abovey. Aliasing begins below
rn, but the signal first gets a significant d.c. component whersimpling rate decreasesitér . This
is half the sampling rate when the non-aliasing filters geirtfpermanent) d.c. response. As the rate is
lowered further, the response continues to vary.

Fig. 1 shows the effect of vertical aliasing, where only agkrow of pixels is sampled in each tile.
The sampling rate decreases from (1) to (8). It is well abgyén (1), decreases to approximately at
(4), and0.5ry in (7). Note that the size, spacing and location of the bldokks is highly unpredictable
for such very low sampling rates. However, aliasing filtaws aseful if we stay well above.5ry. For
textlines shown here, typical vertical spacing is aboun8diinch, soy is 16/inch, and we must sample
well above 8/inch to avoid highly variable results. Morpbgital filtering after the textured reduction,
using closings and openings in the vertical direction, canded to reduce aliasing effects. Examples are
givenin Sec. 2.2.

2.2 Simple filters

In this section we consider simple filters that use extremk fitering to avoid aliasing in at least one
direction. In all cases, we consider a tile of si¥ex N, from which a single pixel will be produced in the
reduced image. Both horizontal and vertical filters can as& of either 1 orV.

For one-dimensional filters, where only a single row or caluof each tile is used, there are four
possibilities. The horizontal filters of rank 1 andthat test pixels in a single row are denotéd, H 4,
respectively. The subscriptdand A represent “OR” and “AND”, because these binary logical atiens
between pixels in the row implement the respective rankrfilertical filters that test pixels in a single
column are likewise denotdd, andV,. These are anti-aliasing in the filter direction, but ahgsbccurs



in the orthogonal direction because of the subsampling.

The results from separable two-dimensional filters depenggeneral, on the order of the filtering
operation. There are four completely anti-aliasing twawelsional filters, that sample the entire tile, and
that do the vertical sampling before the horizontal sangplifihese are denotedo o, Do,4, D40 and
D 4. 4, where the first and subscripts indicate horizontal andoadffiltering, respectively. Ifitis necessary
to indicate the subsampling factor (or tile size), it is gld@s a superscript to the operator; dzjﬁo.

There are a similar set of two-dimensional filters that dazemtal subsampling first. Howeveb, o
andD,4 4 are independent of the sampling order, so there are onlydditianal filters, denotedf)O,A and
DA,O, for which the horizontal filtering is done before the veatitiltering. Of these six two-dimensional
non-aliasing filters, the first four are considerably morécieint to implement for subsampling values
greater than 4, which are of most interest here. Conseganthe examples that follow we show results
of only the fourD operations. The efficiency of these operations is discuss8dc. 4.

Some of the simplest filtering operations are implicit, oamgso, in that few or no pixel operations
are actually performed. For exampkég;, can be implemented by checking if there are any pixels on in a
single row of the tile, using a machine instruction thatdelsa byte has value 0.

The eight simple one-dimensional and two-dimensionaltext reductions are shown in Fig. 2 for 8x,
as applied to a fairly complicated page image that was schan800 ppi. The reduced images are thus
sampled at about 40 ppi, with reference to the original imége useful to consider the document image
features, projected as texture patterns, that are satighese images. In particular, different operations
project vertical rules, horizontal rules, text as textB®components, text as well-defined and connected
textlines, text as small character-sized components wifiiéreint degrees of separation, text as tiny dense
noise, text as whitespace, halftones as solid regiongphalf as the only projected component, etc. The
2D anti-aliasing filters give particularly uniform (and féifent) results for the different image regions. For
comparison, results sampled at about 20 ppi are shown ir8FEyven at this low resolution, textures with
regular characteristics and useful differences are Hgliatojected.

When should the one-dimensional and two-dimensional temluoperators be chosen? The one-
dimensional horizontal operations are the fastest, becanly a single row is filtered; all others require
reading every pixel in the tile. Fortunately, the vertichdsing caused by, and H, are relatively
unimportant for several important textures found in pagages: halftones, text lines and vertical lines.
For halftonesH, will typically generate a (nearly) solid response when #ragling rate is below 60 ppi,
regardless of the screen angle. Text lines rarely have gakftequency in excess of 10 ppi, So usehf
and H 4, above 20 ppi results in no appreciable vertical aliasinggeri¥some vertical aliasing occurs, the
result is only an inaccuracy in the observed text line fregye The texture of the reduced image retains
the appearance of text lines, along with its textural sigregtgiven by sets of horizontal raster lines with
ON pixels followed by lines without ON pixels. Finally, veal lines that are longer than the tile size will
be projected out by, and H 4 without loss of information, compared to the more expensa&ofDg 4
or DA,A-
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Figure 2 The eight most simple 8x textured reductions, applied tdg@dimage.
In the first row,Hg, H, V5 andV§. In the second rowD} ,, D, 4,
D§ o and DY .




Figure 3 The same eight textured reductions as in Fig. 2, but herexatdduction
(about 20 ppi). Thé'® and V!¢ operators are in the first row; th&!6
in the second.




3 Image analysis

In conjunction with morphological filters,textured reductions can be used to segment pages into
regions of different texture, such as halftones, line art] &xt. In this section, examples are given for
these operations. The results are not as good as with dgre@isicaded threshold reductions, but here we
interested in the types of qualitative information that barobtained quickly.

3.1 Use of the simple filters

The quality of the analysis depends on the subsampling,regibect to the actual scanned image. For
example, results on a 600 ppi image using a 16x textured tietughould be similar to those on a 300 ppi
image using an 8x reduction, because both project out exsiuapproximiately 40 dpi. Consequently, in
this section, we describe the results in terms of the samgfie@guency with respect to the original scan in
inches, rather than giving the actual reduction factor usésb, to describe the morphological operations
in a way that is independent of the original scanning regmuthe approximate size of each structuring
element is given in inches on the original page. For exanaple) inch SE on an image subsampled at 20
ppi is 20 pixels long.

Fig. 4 shows some analysis at 40 ppi. The images are numbremdéft to right and top to bottom.
(1) is a reduced representation of the original image; weyced it with a sequence of level 2 threshold
reductions to give a good visual appearance. (2) is produdtédV,,, followed by a large horizontal
opening (1.2 inch). Likewise, (3) is produced with, followed by a large (1 inch) vertical opening. The
halftone seed in (4) is made wifh, 4, followed by a very small square opening (0.1 inch). Thetbat
clipping mask in (5) is made with,, . A filling operation from (4) into (5) gives the halftone regs in
(6). The actual horizontal lines in (7) are found by subiragc(6) from (2), and the vertical lines in (8) are
found by subtracting (6) from (3). (9) shows the vertical igpace, found by photometrically inverting
(1) and doing a large (1.2 inch) vertical opening. The rowggth tegions in (10) are found by subtracting
(6) from Hy and closing with a moderately small (0.25 in) horizontal $Eis is cleaned up in (11) by
subtracting out the halftones (6) again, as well as the bota and vertical lines; the result is opened
with a moderately large (0.5 inch) horizontal SE, the vaitighitespace is subtracted, and then opened
again with a small (0.2 inch) horizontal SE. This sequenckasaeasonably nice text regions for all of
the images tested. Finally, the text regions can be blocked (12) by opening with a tiny (0.05 inch)
vertical SE to remove noise, and then doing a closing/ogenith a small (0.2 inch) vertical SE.

These results can be compared with similar ones in Fig. 5 ppR0At lower resolution, there is more
noise, particularly in the horizontal and vertical lineatthre extracted. At 40 ppi, these lines correspond
exactly to the rules in the original image, but at 20 ppi, @&x&ous lines and noise are introduced.

Extraction of halftone images, horizontal and verticaénand text lines is quite reliable at 40 ppi.
Typical results for these elements are shown in Fig. 6, f@ages with diverse layout characteristics and
using the filter sizes and sequences described for Fig. 4.
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Figure 5 12 steps in component analysis at 20 ppi
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Figure & Four examples from images with diverse elements and lago40 ppi.
For each the input image and derived halftone regions, tomtial lines,
vertical lines, and text lines are shown.




3.2 Use of the horizontal filters

The horizontal filterd1, and H 4 have a special role by virtue of their speed (see Section déftails).
Because there is no vertical filtering, they exhibit veiftedaasing from vertical structure with frequency
above the Nyquist limit. Nevertheless, they are useful feargety of tasks:

e Halftone detection Halftone screens are usually tilted, and have screen éreges of 60 ppi or
greater, corresponding to Nyquist frequencies well ab@@epbi. With subsampling at or below 40
ppi (far from the Nyquist limit), aliasing can occur, but tvismall amplitude. As a result, halftone
regions typically give a solid response. UHq, followed by a close/open combination to remove
noise.

e Textline detection Textlines typically have a vertical frequency less tharpf so no aliasing is
expected for sampling above 20 ppi. See, however, the afj@siample in Section 2.2. The result of
Hy is horizontal lines, that may contain inter-word gaps al@¥@pi. These gaps can be solidified
by a small horizontal closing. Textlines are easily distisped from halftone regions; because of
the vertical line texture, they can be removed with a smatie& opening.

e Vertical rule detection. These are projected by, without loss, and can be distinguished from
textlines with a small vertical opening.

e Horizontal rule detection. Rules of width greater than the sampling distance will leEserved by
H 4, and preferentially projected ¥ 4, followed by a large horizontal opening. Narrow rules can
be lost due to vertical subsampling. However, if te reduction is done odifferentraster rows
in each tile within a horizontal row of tiles, thin horizohtales will be projected from those tiles
where the sampling coincides with the rule, resulting in@kbn line.

e Multiple column detection. Use Hy, followed by bit inversion and a vertical opening. This will
leave vertical lines in the left and right margins, as welbasveen any text columns in the image.

e Text orientation. Hp can be used to detect text of either portrait or landscamntaiion. Under
Hp, landscape text is rendered into broken vertical lines revtiee words and often the characters
are separated. A vertical opening will remove this textou preserve vertical rules. Alternatively,
vertical runlength analysis can be used to identify thigesakextural characteristic.

e Image processing for skew detectionWhen using bitmap variance statistics for analyzing skew
onreduced images$], is particularly effective for subsampling because it engites the horizontal
nature of the text-lines, as is apparent from the resultsggnZand Fig. 3. This emphasis boosts the
differential signal, allowing accurate skew detectiomira smaller number of textlines.

4 Implementations

After filtering (horizontal, vertical or both), rows and cohns must be subsampled. Column subsam-
pling is the most expensive, and requires some care. Soneeigand conflicting guidelines can be given



for efficient implementation of image operations on a gelaugpose 32-bit computer:

1. Operate on 32-bit words to the maximum degree possibke gbhl is to retire source or destination
words with the minimum number of operations. For power-oé@uctions, 32-bit source words are
compressed into 16 or smaller bit destination chunks.

2. Register operations are very fast. Maximize use of regshifts and register logical operations.
The most common operations are mask (logical AND), shiit, @R.

3. Consider using only small tables (256 or less). Smalksban be made quickly when needed, and
have a much higher cache hit rate than, for example, 16bi¢$a This can compensate for the
larger number of table lookups required for smaller tables.

4. Minimize table lookups. Table lookups are relatively expive. The number of lookups is mini-
mized by using all bits in the table.

5. Unroll loops involving 32-bit writes to the destinatiorJnrolling loops reduces the number of
test/branches, and can be used to minimize writes to memory.

6. Minimize writes to memory. The cost of writing to memoryhighest on systems such as the Sun
SPARC, that write through the cache and take 11 cycles.

Within these guidelines, several efficient implementaiohcolumn subsampling possible. We men-
tion two different types. In both, results for at least 3Zlmf destination image are always stored into a
register before being written to memory.

The first method typically determines several destinatioelp at a time, and is more efficient for
smaller tiles, such a& x 2 or 4 x 4. The source words are optionally filtered using intra-théts and
logical operations to set the value of the pixel in each tiet{le row) that will be subsampled. For
example,H 4 uses AND operations between shifted pixels, without magkBubsampling is then done
by first applying a comb mask with the subsampling periogittproject these pixels in a source word.
The word is then successively shift/ORed to make all subamgpixels contiguous. For example, a 4x
subsampling requires two sequential shifts (of 15 bits ahit€) to compress the 8 selected pixels in a
32-bit word into a contiguous byte. A 256-entry table lookigsmutes them back into the original order.
Four of these operations can be placed in-line to constinegpixels in a full destination word. Threshold
reductiont by 2x (or greater) can be implemented in this way. The filgeqart is very fast; most of
the computation is in the subsampling (the extraction offiltered pixels). Consequently, a 2extured
reduction is not significantly faster than a ®xesholdreduction.!

The second method uses no table lookups, and it is more efficienon-aliasing textured reductions
with tile sizes8 x 8 or larger. Source words are optionally filtered, and thelgpssively shifted, masked,
and tested. Consider thié, and H 4 operations. No explicit filtering is necessary. Fép, the pixels in
successive tiles are projected from the source word (by ahd mask). This is tested and if nonzero, the

!In fact, the 2x threshold reduction for levels 1 and 4 arefidahto Do o andD 4 4, respectively, and the level 2 and 3
threshold reductions are equivalen(ig, , U D% ) and(Dg , N D% ), respectively.



corresponding pixel is turned on in the reduced destinaonH 4, the projected tiles are compared with
the mask, and if equal, the destination pixel is turned orthAse operations on source and destination
words take place in registers.

If filtering is required, this is done by a shift followed by@gical operation. Suppose insteadr)
we wish to check whether either of two specific pixels in ealehare ON. First shift and OR to put the
result for each tile in a single pixel of that tile. Then caowyt the shift/mask/test procedure given above,
using a mask that covers only the result pixel, not the etitee

We see now why the large tile two-dimensional textured rédos are more efficient when the vertical
filtering preceeds the horizontal filtering and subsamplifddne reason is that the vertical operations,
requiring only logical operations between 32-bit words, much faster than the shift/mask/test horizontal
ones that do the subsampling.

The speed of thél operators on a 40 MHz Sparc 10 is given in the second columimeofailowing
table. For example, ai ! reduction on ag.5 x 11 inch page scanned at 300 ppi takes 8 milliseconds.
This can be followed by a quick erosion of the reduced imageake a decision if any halftones existed
in the original 8 million pixel image. The third column givéee number of source pixels retired in each
machine cycle.

Reduction| Source Mpixels/set Source pixels/cyclg
8x 270 7
16x 1000 25
32x 3200 80

S5 Summary

A special class of binary image reduction operations, theltides filtering, has been introduced. We
have derived conditions under which no aliasing occurs leat one direction, and described the special
textured reduction operators that work under these camditiThese operations can be implemented effi-
ciently because the filtering and subsampling operatioms@mbined. Filtering operations for which no
aliasing occurs require sampling over all pixels in eagh #When sampling over the tiles is not complete,
some degree of aliasing is introduced. This is often alldejabecause for particular types of texture
found in document page images, errors in projected textamnebe removed in later processing stages.
The engineering trade-off with incomplete sampling is leswintroduction of aliasing and faster imple-
mentations. We have shown that fast textured reductionbearsed to obtain quickly page segmentation
information describing the salient textural regions of @agages. For more accurate page segmentation
implementations, it is often useful to have informationtsas whether or not there are halftone images and
text regions, and if there is text, if it exists in single orltmple columns. For these applications, tHe
andH 4 textured reduction operators are the most interestingusecaf their efficient implementations.
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