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Abstract

A class of shift-variant reduction operations is introduced, that is useful for performing efficient and
controllable shape and texture transformations between resolution levels. In their most general form, the
operations proceed in three steps: (a) convolve a binary image with a kernel of arbitrary size; (b) threshold
the result; (c) subsample to produce the reduced image. Taking a binary structuring element for the kernel,
the threshold convolution on a binary image is equivalent toa rank order filter, and the full reduction
operation is athreshold reduction. Threshold reductions that use convolution filters and subsample tiles
of equal size are optimized by combining the three operations, using only logical raster operations and
producing threshold convolution values only at the sampling points. For 2x reduction, the four possible
threshold values (1, 2, 3, and 4) refer to the minimum number of ON pixels within each 2x2 tile for
which a pixel in the reduced image will be ON. Algorithms for boolean raster operations are given for 2x,
3x, and 4x threshold reduction, and lookup tables that efficiently implement column raster operations are
provided. Threshold reduction rates of 2.5x107 pixel/second can be achieved with a Sun SparcStation2TM .
A mask-forming image analysis cycle of threshold reduction, augmented by morphology and followed by
replicative expansion to full resolution, is described, and some general properties of the cycle are derived.
A simple application of threshold reduction to document image analysis, the extraction of halftone regions
from scanned images that also contain text and line graphics, is illustrated. A sequence of 2x reductions
with first low and then high thresholds is used to create a reduced image consisting of a mask over the
halftone regions. In this way, the extraction occurs as a natural consequence of the reductions.

Keywords: image processing, image analysis, morphology, multiresolution, threshold reduction, thresh-
old convolution, segmentation, document, texture
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1 Introduction

The intent of this paper is to describe an effective and computationally efficient multiresolution technique
for the analysis of shape and texture properties of large binary document images. Morphological image pro-
cessing can be used to extract both shape and textural information from images. Without special hardware,
however, use of morphological image processing at high resolution has a large computational cost, particu-
larly in time, and especially when large-scale features areto be identified. The amount of computation varies
approximately inversely as the third power of the reductionfactor. Two powers are due to the relative number
of pixels, and the third power comes from the size of the structuring elements or the number of iterations re-
quired to cover a given feature. Thus, efficiency dictates that images be analyzed at the minimum resolution
required for characterizing the requisite shape and texture structure.

Multiresolution methods for image analysis require construction of representations of the original image
at many scales. The simplest method for constructing a multiresolution pyramid is successively to subsample
the image, at each reduction step taking only one pixel from ar x r tile of pixels in the original. This typically
(although not always) preserves the average density of the original image. Haralick et al.[6, 7] have empha-
sized the importance of using a low-pass filter prior to subsampling, to prevent aliasing of high frequency
components. They investigated a morphological analog of the sampling theorem, with a view toward a best
effort for reconstructing a high resolution filtered image from a subsampled version. Burt[4] has shown
that multiresolution methods with small filters are capableof accurately characterizing texture at multiple
scales. Preservation of such image qualities may be useful for measurement, compression, reconstruction,
and rendering, where fidelity to the original is paramount.

However, we are not explicitly concerned with either the spatial or the detailed textural fidelity of the
subsampled image. Instead, for most purposes of image analysis, we search for methods that give maximum
discrimination between regions with differing shape and texture properties. The methods given here are
image-based, in that discrimination takes place almost entirely in the image domain. Image texture, which
is a set of statistical properties of relations between ON and OFF pixels within a region whose size is much
larger than the measures used for gathering the statistics,plays a central role. Separation of regions with
different texture is accomplished by operations that either differentially transform texture with scale change,
or differentially project texture components at constant scale. Ideally, a sequence of operations is obtained
that projects out or labels all pixels in any chosen region, and does not mis-classify pixels in other regions.

Our multiresolution pyramid building operations use arank order filterbefore subsampling. This filter is
in fact athreshold convolution, and for extreme values of the threshold parameter it is equivalent to morpho-
logical dilation and erosion. We call the multiresolution operationsthreshold reduction. Similar approaches
have been taken. Tanimoto[10, 11] described construction of binary image pyramids where a pixel at a given
level is computed from a threshold of the sum of ON pixels of its children. Bones et al.[3] recently presented
an approach for segmenting document images based on morphological image processing and image analysis
at various levels of reduction.

The plan of the paper is as follows. We first describe the elements of multiresolution morphology, and
introduce the threshold reduction operation. The optimization of the algorithm for general purpose computers
is described, and the effect of threshold reductions on texture is explained. Some properties of the mask-
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forming, pixel-labelling cycle of reduction/expansion are given. Then the method is illustrated by the problem
of separating halftone image regions from text and line art.We conclude with a short discussion of the
approach. Two appendices provide details on the efficient implementation of threshold reduction by logical
raster operations and lookup tables. All algorithms have been implemented in C. CPU timings are given for
the Sun Sparcstation2TM .

2 Multiresolution morphology

The filtering operations used in threshold reduction are rank order filters, which are a generalization of the
morphological operations erosion and dilation[9, 5]. We first describe these filters, and then show how they
are used to implement threshold reduction.

2.1 Morphology and threshold convolution

The fundamental morphological operations, erosion and dilation, are most efficiently implemented by trans-
lating the image and either ANDing or ORing it with itself. Specifically, lettingX represent the binary image
and the (usually) small setA represent thestructuring element(SE), theerosion	 anddilation� of X byA
are defined as X 	 A = \z2AX�z (1)X � A = [z2AXz (2)

whereXz is the translationof X along the pixel vectorz, and the set intersection and union operations
represent bitwise AND and OR, respectively. These operations can be implemented as raster operations to
take advantage of the word-parallel representation of the pixels within a computer.

Other morphological operations can be built from these two.Of most importance in image analysis are
theopening, closing, hit-miss transform, andgeneralized opening[2]. The latter two operations allow explicit
pattern matching to background pixels as well as foregroundpixels, and all but the hit-miss transform are
idempotent and center-independent.

These morphological operations all require exact matches to the SEs. An imperfect match, called arank
order filter or, equivalently, athreshold convolution, is a generalization of the erosion and dilation operations
of morphology. Them-th rank order transformation of a binary imageX by a SEA is the set of pixel
positions to which the translated SE covers at leastm pixels in the image:X 2m A = fz : jX \ Azj � mg (3)

If the thresholdm = 1, X2mA is the dilationX � �A.1 Let A be anr x r square SE of “hits”. Then at the
other extreme, where the thresholdm equals the cardinalityr2 of A, X2mA becomes the erosionX 	 A.
For the relationship between rank order and morphological operations see [8].1 �A is the spatial inversion ofA about its center. Note the location of the center points for the filters in Figure 1.
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2.2 Threshold reduction

To motivate the use of threshold reduction, consider the problem of segmenting a scanned image into text
and halftone image regions. We look more closely at this problem in Section 4. A brute-force morphological
approach might be to close the image with sufficiently large SEs to solidify the halftone parts, and then open
the image with even larger SEs to remove the (somewhat blocked up but smaller) text parts. The opening
would not affect the solid halftone regions, and the result would be a separation mask covering only the
halftone areas. The closing removes OFF pixels that are “near” ON pixels, and the opening removes ON
pixels that are “near” OFF pixels, with the scale of “near” given by the size of the respective SEs. Both
operations can be viewed as alteration of short-range imagetexture.

This suggests that filtering operations before subsamplingshould be chosen to change the image texture
so as to mimic operations at full scale. To solidify pixels within halftone regions, use a closing or dilation
operation before subsampling; then at reduced scale, use anopening or erosion before further subsampling.
Because it is expensive to use large SEs at high resolution, we can effect an arbitrary and efficient2n reduction
by a cascade of n 2-fold reductions, pre-filtering with 2x2 SEs at each step.

Thus we tile the image into 2x2 squares and subsample the upper-left pixel of each tile. Consider the 2x2
SE whose reference position is located in the lower-right corner (Figure 1a). Dilation with this SE prior to
subsampling is equivalent to setting a threshold of 1 ON pixel in the 2x2 pixel tile: if at least 1 pixel is ON,
after dilation the pixel to be subsampled will surely be ON. Likewise, use of an erosion by the SE shown in
Figure 1b prior to subsampling is equivalent to setting a threshold of 4 ON pixels in the tile: all four pixels in
the tile must be ON if the subsampled pixel is to be ON. Clearly, flexibility is gained if we generalize to allow
filters that threshold on 2 and 3 ON pixels within the tile. Therequisite filtering operations are threshold
convolution (or, equivalently, rank order filters) mentioned previously.

(a) (b)
Figure 1. (a) Dilation filter for threshold 1; (b) erosion filter for threshold 4

We call the combination of a threshold convolution followedby subsampling athreshold reduction. The
halftone segmentation problem is efficiently addressed by asequence of 2x reductions using a small threshold,
say 1, to consolidate the halftone textured region, followed by further 2x reductions with a large threshold,
say 4, to remove the text regions. Larger atomic reductions with more threshold levels for pre-filtering can
also be used, but in practice we have found that the four different 2x threshold reductions provide sufficient
flexibility.
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2.3 Optimization of the threshold reduction algorithm

It is only necessary to apply threshold convolution to thosepixels that will be subsampled. Further, it is desir-
able to use logical operations instead of arithmetic, in order to take advantage of word parallel instructions in
the computer. Threshold reduction is efficiently implemented by first forming a half-height, full-width image
using a logical operation (OR or AND) between each odd row andthe even row below it. This is followed
by reduction to a half-height, half-width image using a logical operation (OR or AND) between each odd
column and the even column following it. If both row and column operations are OR, each ON pixel in the
reduced image is ON if any of the four pixels in the corresponding tile of the original image were ON. This
is a threshold 1 reduction. Likewise, if both operations areAND, we get a threshold 4 reduction.

It takes approximately twice as much work to reduce images with threshold values of 2 and 3. To do
this, form two intermediate half-height, half-width images, using OR-AND and AND-OR for the row and
column operations. The threshold 2 and threshold 3 reduced images are then found by taking theunionand
intersectionof these intermediate reduced images, respectively. The operations are summarized in Table 1.
Along with generalization to 3x and 4x reductions, they are derived in Appendix I. Appendix I also describes
symmetry properties of the threshold reduction operators.

Threshold Row/Column Operations

1 OR/OR
2 (OR/AND) [ (AND/OR)
3 (OR/AND) \ (AND/OR)
4 AND/AND

Table 1. Implementation of 2x threshold reduction with boolean operations.
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The final optimization is to replace the the column-wise logical operations, which are very slow on a
computer that stores the pixels sequentially in raster order, by a set of lookup tables that emulate these column
operations. Algorithms for constructing various sized OR and AND lookup tables are given in Appendix II.

With these optimizations, a 2x threshold reduction using either thresholdm = 1 or m = 4 is not much
slower than simple subsampling, and proceeds at about 25 Mbit/sec. Reductions using intermediate threshold
valuesm = 2 andm = 3 operate at about half this speed.

2.4 Rules of thumb for threshold reduction

The effect on texture from a sequence of threshold reductions is fairly predictable. For example, a set of four
sequential threshold 1 reductions is approximately equal to a dilation with a 16x16 brick SE, followed by
subsampling. Pairs of ON pixels separated by less than about16 pixels will typically be joined. Likewise,
four sequential threshold 4 reductions are roughly equivalent to an erosion with a 16x16 brick SE, followed
by subsampling. Regions of ON pixels smaller than such a brick will typically vanish in the reduced image.
Just as dilation and erosion expand and shrink regions of ON pixels, threshold reduction using thresholds of
1 and 4 tend to expand and shrink solid regions, respectively, and some compensation may be required. The
subsampling operation is not translationally invariant; consequently, some variation is to be expected due to
the positioning of the 2x2 tiles on the image.

3 Properties of Threshold Reduction/Expansion Cycles

Here, we consider set properties of threshold reduction, cascades of such reductions, cascades augmented by
shift-invariant morphological operations, andcyclescomposed of threshold reduction cascades followed by
replicative expansionto the initial resolution.

For r-fold reduction, at each reduction stage anr x r tile is reduced to one pixel. For a cascade ofk such
reductions, atile setis the set ofrk x rk pixels that are reduced to a single pixel. In the replicativeexpansion
step, that pixel is then expanded back to ark x rk tile set, with each pixel assigned the same value as the single
pixel from which it was replicated. The result of a reduction/expansion cycle is the creation of a new binary
image at full resolution, that can be used as an extraction mask. The value of each pixel in this image can be
viewed as a label, on the corresponding pixel in the originalimage, that describes some set of neighborhood
properties of the original pixel.

PROPERTY 1 . A cycle composed of k threshold reductions, each with threshold m = 1, and followed by
replicative expansion, is extensive.

Proof. If any pixel is initially ON in anr x r tile, then after a reduction/expansion cycle withk = 1
reduction, all pixels in that tile will be ON. Fork reductions, the result applies to each tile set ofrk x rk
pixels in the image.2
PROPERTY 2 . Threshold reduction followed by replicative expansion tothe original resolution is idempotent
and increasing. For minimum threshold it is extensive, for maximum threshold it is anti-extensive, and for
intermediate thresholds it is neither extensive nor anti-extensive.
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Proof. After a reduction/expansion cycle, all pixels in a tile are either ON or OFF. Any threshold reduction
of a tile with all pixels ON results in an ON pixel; likewise, any threshold reduction of a tile with all pixels
OFF results in an OFF pixel. Thus, the second cycle does not change the image, and the cycle is idempotent.
The cycle is increasing because increasing the number of ON pixels in a tile can never cause the thresholded
tile to change from ON to OFF, and v.v. For minimum threshold,if any pixel is originally ON in a tile, after
the cycle all pixels will be ON, so the cycle is extensive. Formaximum threshold, if any pixel is originally
OFF, after the cycle all pixels will be OFF, so the cycle is anti-extensive. For an intermediate threshold of m,
where1 < m < n = r2, all pixels in the tile will be turned ON if at least m pixels are initially ON. If less
than m pixels are initially ON, they will be turned OFF, so thecycle is not extensive. Likewise if not more
thann�m pixels are OFF, all such pixels will be turned ON, so the cycleis not antiextensive.2
PROPERTY 3 . A cascade of threshold reductions followed by replicativeexpansion to the original resolution
is idempotent and increasing.

Proof. Suppose there arek threshold reductions in the cascade. Expansion replicateseach reduced pixel
to ark x rk set of pixels. Any cascade ofk threshold reductions on such a set produces a single pixel with
the same polarity as the set; hence, the cycle is idempotent.The cycle is increasing because turning any pixel
from OFF to ON in ark x rk set can never cause the pixel produced by a cascade ofk threshold reductions
to change from ON to OFF, and v.v.2

Consider a cascade of threshold reductions, augmented at each stage of reduction by a set of morpholog-
ical operations, and ending with replicative expansion to the original resolution. Under what conditions is
the result idempotent and increasing? First, if center-dependent operations such as dilations and erosions are
permitted, then the cycle will not in general be idempotent,because an arbitrary shift of the image is possible.
Second, if non-increasing operations like the hit-miss transform and the generalized opening are permitted,
then the cycle can not in general be increasing. Third, if non-increasing operations are permitted, then the
cycle will not generally be idempotent because the replicative expansion step results in solid regions that may
give no match to a generalized opening. This leaves the following property of an augmented cascade:

PROPERTY 4 . A cascade of threshold reductions, augmented at each stageof reduction by arbitrary in-
creasing, anti-extensive, idempotent morphological operations (such as opening), and followed by replicative
expansion to the initial resolution, is idempotent and increasing.

Proof. The increasing property of the augmented cascade follows because each atomic operation (thresh-
old reduction or opening) is increasing. Because tile sets do not interact under threshold reduction, and
because the opening is anti-extensive, any tile set that begins the second cycle with only OFF pixels will
remain in that condition. Further, because (a) both threshold reduction and opening are increasing and (b) at
the beginning of the second cycle a tile set is composed of uniform pixel values (ON or OFF), any pixel set
that reduced to an ON pixel in the first cycle will surely reduce to the same value in the second cycle, and the
augmented cascade is idempotent.2

This result does not apply whenclosingsaugment the threshold reductions. Figure 2 shows a simple
example containing four 2x2 tiles, where the result of the second cycle is different from that of the first. The
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cycle consists of a closing with a diagonal SE of length 3, a 2xreduction with a threshold of 1, and a 2x2
expansion to original scale. In the first cycle the closing has no effect, but in the second cycle, the closing
turns one pixel ON in each of the empty tiles.

(a) (b) (c) (d) (e)

Figure 2. (a) initial image, (b) image after first cycle,
(c) image in second cycle after closing with 3x3 SE in (e),

(d) image after second cycle.

4 Example: segmentation of halftone image areas

Image regions in scanned documents have a variety of short-range textural properties, due to both the method
of construction and the scanning and thresholding conditions. Stippled regions are regular and periodic; for
all pixels, the minimum distance to the closest ON pixel is sharply bounded. Halftone regions constructed
with error diffusion algorithms can have an anisotropic distribution of this measure, and an upper bound for
the distance is not guaranteed. The scanner thresholding can cause isolated foreground or background pixels
to disappear (i.e., regions of light halftoning become lighter, and dark regions solidify). As a result, the
textural statistics of such image regions is highly variable.

The multiresolution method described here correctly labels all pixels that do not belong to image areas.
When applied to regular stipple patterns and large dark regions, it also correctly labels all pixels within
such image regions. However, it may miss some pixels that arein very light and extensive image regions.
Thus, depending on the set of morphological operations thataugment the threshold reduction cycle, the
segmentation mask may not cover all pixels in some image areas.

The resolution of images displayed here is given in units that are independent of the resolution of the
physical rendering device. All images are labelled with both thesampling resolution, in pixels/inch, and
the rendering resolution, also in pixels/inch. The sampling resolution gives the size of the sampled (or
subsampled) pixels in the image relative to the original, whereas the rendering resolution gives the size
of these sampled pixels as rendered on the page. Themagnificationis the ratio of sampling to rendering
resolution.

As an example of a typical problem, Figure 3 shows a scanned image where the contrast in the halftone
region has been increased by the scanner: the dark parts havesolidified and the light parts have opened up.
Figure 4a shows the image after two 2xm = 1 threshold reductions, and Figure 4b shows the result of a
subsequent closing by a 3x3 brick SE. The halftone region is not entirely solidified, and the text is somewhat
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blocked up. Figure 4c shows the result of two more 2x threshold reductions, this time at the other extreme
with m = 4. Remaining pixels in the text/line regions are much less dense, and can be eliminated entirely
with an opening by the 3x3 brick SE, as shown in Figure 4d. The entire process on this 8 million pixel image
takes about 0.5 sec.
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Figure 3. Scanned image containing halftone image area(s).
Sampling resolution is 300/in; rendering resolution is 375/in.
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(a) (b)

(c) (d)
Figure 4. (a) 4x reduction withm = 1 for each stage. Resolution: sampling (75/in), rendering (196/in).
(b) Closing with 3x3 SE. Resolution: same as (a). (c) Further4x reduction withm = 4 for each stage.
Resolution: sampling (19/in), rendering (49/in). (d) Opening with 3x3 SE. Resolution: same as (c).
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In addition to the mask region over the halftone image, a small mask region covers a graphic figure in the
upper-left corner. This was left after the final opening witha 3x3 brick SE. If a 4x4 brick SE had been used,
or if the image had been further reduced 2x (to 32x reduction from the initial sampling resolution) and then
opened with a 2x2 brick SE, this region would have been removed. For complicated images, small graphics
and halftone regions can be sieved by opening with a set of SEs.

In part because of the final opening, the mask in Figure 4d, if expanded to full resolution, would not not
cover all the pixels in the light image areas. This can be rectified in a number of ways. A simple approach, that
is effective for images with rectangular image regions (which constitute the majority of cases), is to identify
the image regions by computing the bounding box of connectedcomponents in the mask. This is nearly
instantaneous at the low resolution of 19 pixels/inch. To accomodate non-rectangular image regions, the
mask can either be closed with a rectangular or square SE, or it can be subjected to some number of iterations
of a morphological bounding box filling algorithm[1]. Either way, the mask regions will be solidified to some
extent, but without expansion of the boundaries.

5 Discussion

The search for fast and effective methods for characterizing some short-range texture properties of binary
images led directly to the use of threshold reduction as a keytechnique for multiresolution image analysis.
Threshold reduction is closely related to image morphology, and morphological operations are useful in
conjunction with threshold reduction for performing imageanalysis within the image domain.

We have shown how the basic operations can be optimized to enable rapid segmentation of binary images.
The example given for motivating the use of threshold reduction, halftone image segmentation, is only one
of a large set of segmentation tasks on document images for which threshold reduction and morphology are
well-suited. For example, word boundaries or word masks areeasily found using threshold reduction, with a
small threshold to close intra-word spaces and augmented bymorphological operations such as closing. For
this case, reduction can typically be carried down to a sampling resolution of about 40/in, which is still high
enough to keep words from joining.

Some image analysis can be performed entirely in the image domain, with only image processing opera-
tions. For example, reduction/morphology/expansion cycles can be used to create full resolution separation
masks for selected regions. This can be understood as a multiresolution pixel labelling process, and some
properties of such cycles have been derived. Often it is useful to extract informationabout the image, in
a form that does not directly label individual pixels. A typical example is the determination of bounding
boxes for regions that are computed at low resolution after acascade of threshold reductions augmented by
morphology.
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6 Appendix I: Implementation of threshold reduction by logical oper-
ations

In the procedure outlined above forr = 2, a threshold reduction is effected by a sequence of logical operations
between rows and columns of anr x r tile. This appendix gives a general method for finding a set ofm =r2 boolean operators, implementable by row and column raster operations, that map anr x r tile to a single
pixel, such that fori = 1; 2:::m, there exists an operator with the following property: for all r x r bit arrays
with fewer than i ON pixels, the result is a single OFF pixel, and for all arrays with i or more ON pixels, the
result is a single ON pixel.

The solution is not unique, even with the following constraints:

1. Row operations are done before column operations.

2. Only “and” and “or” operations are allowed between rows and columns.

For a 2x2 reduction, there are only24 configurations, and the minimum mapping operators can easily be
found by considering these 16 cases. However, the number of configurations grows exponentially with the
powerr2: for r = 3 there are29 = 512 configurations; forr = 4 there are216 = 65; 536; etc. Operators
that work over such large sets can be found by decomposition into products of particular row and column
operators that exploit symmetries. We choose one-dimensional row and column operators that are threshold
operators for 1xr andrx1 arrays. Their product can then be used to form a basis set for the two-dimensionalrxr operators, from which the threshold operators are formed byboolean combinations.

6.1 Threshold operators for r = 2 reduction

The requisite thresholding operators on either rows or columns area: or 1 or more ON bitsb: and 2 ON bits

The four products of these operators form a basis set of operators on 2x2 bit arrays, where the first operation
is between rows and the second is between columns:aa: or=or 1 or more ON bitsab: or=and at least 1 ON bit in each columnba: and=or at least one column with 2 ON bitsbb: and=and all 4 ON bits

The text on the right describes those 2x2 arrays for which thebasis operator returns an ON bit. The operatorsaa andbb are clearly the required ones for thresholding at 1 and 4 ON bits, respectively. To find thresholding
operators for 2 and 3 ON bits, we must form boolean combinations of these basis operators.

From the 16 possible 2x2 bit arrays, choose acanonicalsubset by applying the following two reduction
rules, which follow directly from the use of one-dimensional threshold operators:
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1. The position of ON bits within a column does not matter. Thus,put the ON bits in each column in the
uppermost rows.

2. The columns can be permuted. Thus, arrange the columns to have the number of ON bits in each
column decreasing to the right.

Using the notation that anrxr canonical array withe(j) entries in thejth column is denotedrfe(1); ::: ; e(r)g
and grouping them into sets that have exactly one, two, three, and four ON bits, the set of 2x2 canonical
arrays is2f1; 0g [one ON bit]2f1; 1g and2f2; 0g [two ON bits]2f2; 1g [three ON bits]2f2; 2g [four ON bits]

These canonical arrays should be visualized as 2-dimensional binary objects, onto which the basis operators
map as:2f1; 0g <==> aa2f1; 1g <==> ab2f2; 0g <==> ba2f2; 1g <==> ab andba together2f2; 2g <==> bb
The threshold operators are then the union of operators specific to each canonical array, which in general are
intersections of the basis operators. The 2x2 threshold operatorsII1, II2, II3, andII4 are seen to beII1: aa all with 1 or more ON bitsII2: ab [ ba all with 2 or more ON bitsII3: ab \ ba all with 3 or more ON bitsII4: bb all 4 ON bits

This is identical to Table 1. Note that the union of basis operatorsab andba projects all arrays represented
by 2f1; 1g and2f2; 0g, the two canonical arrays for 2 ON bits. Hence, operatorII2 is theunion of these
two basis operators. Also, there is only one canonical arrayfor 3 ON bits, and the threshold operatorII3
corresponding to this array requires theintersectionof the basis operatorsab andba.
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6.2 Threshold operators for r = 3 reduction

We outline the extension to3x3) 1x1 reduction of the method described above. As before, start with
one-dimensional threshold operators for either rows or columns, which are now composed of more than one
operation. Denote an operator ori;j
to mean theor of i andj, wherei; j = f1; 2; 3g andi 6= j. Then one way to write the three one-dimensional
threshold operators for rows or columns isa: or1;2 [ or1;3 [1 or more ON bits]b: and1;2 [ and1;3 [ and2;3 [2 or more ON bits]: and1;2 \ and1;3 [all 3 ON bits]

As before, form a basis set of nine operators on the 3x3 bit arrays from products of these row and column
operators. When these operators act on the 3x3 bit arrays, they give an ON bit for the stated subset of arrays:aa: 1 or more ON bitsab: at least 1 ON bit in 2 columnsa: at least 1 ON bit in 3 columnsba: at least 2 ON bits in 1 columnbb: at least 2 ON bits in 2 columnsb: at least 2 ON bits in 3 columnsa: at least 3 ON bits in 1 columnb: at least 3 ON bits in 2 columns: all 9 bits ON

To form the threshold operators as boolean combinations of these basis operators, construct all canonical 3x3
bit arrays that are distinct in the sense of the reduction rules given above. They are3f1; 0; 0g [one ON bit]3f1; 1; 0g, 3f2; 0; 0g [two ON bits]3f1; 1; 1g, 3f2; 1; 0g, 3f3; 0; 0g [three ON bits]3f2; 1; 1g, 3f2; 2; 0g, 3f3; 1; 0g [four ON bits]3f2; 2; 1g, 3f3; 1; 1g, 3f3; 2; 0g [five ON bits]3f2; 2; 2g, 3f3; 2; 1g, 3f3; 3; 0g [six ON bits]3f3; 2; 2g, 3f3; 3; 1g [seven ON bits]3f3; 3; 2g [eight ON bits]3f3; 3; 3g [nine ON bits]

The action of the nine basis operators given above leads to anexpression (in general, as an intersection
of basis operators) for each canonical array. For example, the canonical array3f2; 1; 1g is projected by the
intersectionba \ a, the array3f2; 2; 0g is projected bybb, and3f3; 1; 0g is projected byab \ a. The
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threshold operatorsIII1 - III9 are found as the union of these generally composite operators corresponding
to the canonical arrays. Thus, for example,III4 = (ba \ a) [ bb [ (ab \ a)
Terms can often be reduced, and sometimes they can be expressed using operators for lower order reduction;
e.g., III3 = a [ II3 [ a
Note, however, that thea andb operators inII3 are the threshold operators for a 3x1 (or 1x3) bit array, not
those for a 2x1 array.

6.3 Threshold operators for r = 4 reduction

The four one-dimensional 4x1 or 1x4 threshold reduction operators can be written in a number of ways; e.g.,a: or1;2 [ or3;4 [1 or more ON bits]b: (or1;2 \ or3;4) [ (or1;4 \ or2;3) [2 or more ON bits]: (and1;2 [ and3;4) \ (and1;4 [ and2;3) [3 or more ON bits]d: and1;2 \ and3;4 [all 4 ON bits]

Construction of the 16 two-dimensionalr = 4 threshold operators proceeds as before.

6.4 Symmetry properties of threshold reduction operators

From the foregoing examples, it is apparent that the threshold reduction operators satisfy the following sym-
metries:

1. The two-dimensional operators are symmetric with respect to the order of row and column operations.

2. For any dimensionality, ifn is the cardinality of the tile, so that1 � m � n, then the thresholdn�m
operator can be found from the thresholdm operator by interchanging all bit unions with intersections
(this includes swappingands withors, as written above).

The second symmetry relation follows from an underlying rank order duality between foreground and
background pixels: a filter of cardinalityn that projects form or greater foreground pixels is identical to one
that projects forn�m or less background pixels.

7 Appendix II: Lookup tables for 2x2 reduction

Efficient implementation of column reduction operations for the 2x2 operatorsII1–II4 requires table lookup.
We give two216-entry tables, one foror and one forand, that are indexed by sixteen bits in the interme-
diate image (generated by raster operations on the rows), and contain eight bits of the reduced image that
correspond to the pair-wiseor-ing orand-ing of the index bits, respectively.
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These lookup tables are generated from an iterative algorithm that does not require bit masking. For the
OR table with a 16-bit indexi, the 8-bit table valuest(i) are generated byt(0) = 0; i = 1;

for (d = 0 ::: 7)i0 = 22d; /* start value of i */t0 = 2d; /* increment value of t */
for (r = 1 ::: 3)

for (k = 1 ::: i0 � 1)t(i) = t(k) + t0;i = i + 1;
Similarly, a 16-bit index AND table is generated byt(0) = 0; i = 1;

for (d = 0 ::: 7)i0 = 22d; /* start value of i */t0 = 2d; /* increment value of t */
for (r = 1 ::: 3)

if (r < 3) tIn = 0;
else tIn = t0;

for (k = 1 ::: i0 � 1)t(i) = t(k) + tIn;i = i + 1;
The size of each lookup table is determined by the maximum value of the parameterd. Specifically, the

number of index bits is2(dmax + 1). For example, an 8-bit index (28-entry) set of tables can be generated by
lettingd run from 0 to 3.

With this hybrid (rasterop/lookup) implementation, the computation time is divided nearly equally be-
tween the row logical operations and the subsequent column lookup operations.

References

[1] D. S. Bloomberg, “Multiresolution Morphological Approach to Document Image Analysis”, submitted
to Int. Conf. on Document Analysis and Recognition,Saint-Malo, France, Sept-Oct 1991.

[2] D. S. Bloomberg and P. Maragos, “Generalized Hit-Miss Operations,” inSPIE Conf. on Image Algebra
and Morphological Image Processing,Vol. 1350, pp. 116-128, July 1990.

[3] P. J. Bones, T. C. Griffin, and C. M. Carey-Smith, “Segmentation of document images,”SPIE Symp. on
Electronic Imaging Science and Technology,Vol. 1258, Feb. 1990.

17



[4] P. J. Burt, “The Pyramid as a Structure For Efficient Computation”, Multiresolution Image Processing
and Analysis,pp. 6-35, Berlin: Springer, 1984

[5] R. M. Haralick, S. R. Sternberg and X. Zhuang, “Image Algebra Using Mathematical Morphology,”
IEEE Trans. PAMI,Vol. 9, pp. 532-550, July 1987.

[6] R. M. Haralick, C. Lin, J. Lee, X. Zhuang, “Multi-resolution morphology,”Int. Conf. on Computer
Vision, London,pp. 516-520, June 1987.

[7] R. M. Haralick, X. Zhuang, C. Lin and J. Lee, “Binary Morphology: Working in the Sampled Domain,”
CVPR ’88, Ann Arbor, MI,pp. 780-791, June 1988.

[8] P. Maragos and R. W. Schafer, “Morphological Filters - Part II: Their Relations to Median, Order-
Statistic, and Stack Filters,”IEEE Trans. Acoust. Speech Signal Process., ASSP-35, pp. 1170-1184,
Aug. 1987;ibid., ASSP-37, p. 597, Apr. 1989.

[9] J. Serra,Image Analysis and Mathematical Morphology, Acad. Press, 1982.

[10] S. L. Tanimoto, “A hierarchical cellular logic for pyramid computers”,J. Parallel and Distributed Com-
puting,Vol 1, pp. 105-132, 1984.

[11] S. L. Tanimoto, “Paradigms for pyramid machine algorithms”, in Pyramidal Systems for Computer
Vision,ed. V. Cantoni and S. Levialdi, NATO ASI Series, Vol. F25, pp.173-194, Springer Verlag, 1986.

18


