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Abstract. This paper describes a two-stage method of document image compression wherein
a grayscale document image is first processed to improve its compressibility, then losslessly
compressed. The initial processing involves hierarchical, coarse-to-fine morphological oper-
ations designed to combat the noiselike variability of the low-order bits while attempting
to preserve or even improve intelligibility. The result of this stage is losslessly compressed
by an arithmetic coder that uses a mixture model to derive context-conditional graylevel
probabilities. The lossless stage is compared experimentally with several reference methods,
and is found to be competitive at all rates. The overall system is found to be comparable
with JPEG in terms of mean-square error performance, but appears to outperform JPEG in
terms of subjectively judged document image intelligibility.
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1. Introduction

Grayscale scanning offers several advantages over binary scanning in terms
of image quality and downstream flexibility, even when the documents being
scanned are binary. The downside is the need to capture, process, and store
much more information. Compression of the scanned grayscale document im-
ages is therefore of great importance.

JPEG [11] is the most widely used method for compressing natural scenes,
but introduces undesirable artifacts around the sharp edges found in document
images, particularly within text and line-art regions. Recently, methods have
been proposed in which different segments of a document image are encoded
using different techniques; a good example is the DjVu format developed by
AT&T [6].

While it is advantageous to use segmentation information to adapt compres-
sion locally, it is not necessary to encode the segments separately. In particular,
the approach proposed here is to use the segmentation information to switch
among probability models used with arithmetic coding, thus allowing the en-
coding to be carried out on a single raster layer. The segmentation information
must be transmitted, but this requires few bits relative to those required for the
image itself. We propose a two-stage approach: (a) morphologically-based seg-
mentation and a one-time lossy transformation to improve compressibility and
maintain intelligibility, and (b) lossless compression by arithmetic coding. Sec-
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tion 2 describes the lossy transformation and segmentation method, Section 3
describes the lossless compression, and Section 4 presents some experimental
results.

2. Lossy Stage

Unlike conventional lossy compression techniques, such as JPEG, which per-
forms lossy quantization and lossless encoding of the coefficients atomically,
here we separate the lossy step from the lossless one. Because the lossy step is
performed in the image domain, rather than the transform domain, the change
in visual appearance can be controlled by minimizing the maximum pixel value
change.

Most of the entropy in a scanned grayscale image is in the low-order bits
(LSBs) of each pixel. Because these bits are the least visible, they can be
set to zero by rounding. For example, for 8 bit pixels, three LSBs can be
set to zero by adding 4 (binary 100) and truncating to the 5 MSBs, taking
care to avoid overflow. To take account of neighboring correlations, we use a
multiscale approach were four pixels at one scale are compared and are either
left unchanged or averaged with post-rounding. The thresholds used for the
comparison at each scale can be chosen either to preserve low-contrast features
(such as bleed-through) or to remove them.

2.1. ‘Pyramid Scheme’

For document images, it is important to represent the pixels in transition re-
gions between light and dark (i.e., at edges) with fidelity. This is accomplished
in the following manner. The lossy stage first rounds the nr LSBs of all pixels
at full resolution to 0. Then it generates a pyramid of nd reduced images of
dimension 2−nd relative to the original. At each 2×2 → 1×1 stage, the image
is tiled into 2 × 2 pixels and the maximum deviation from the average within
the tile is compared to a level-dependent threshold. If the deviation is smaller
than the threshold, a single pixel is saved with the average value (again with nr

LSBs rounded to 0); otherwise, the pixel is marked with the value 1, which is
distinguished from all possible rounded average values. Beyond the first stage
in the pyramid, pixels with value 1 can be encountered and are ignored in the
averaging process.

After the reduced images are generated, the average values are propagated
back up the chain. Consider the propagation from level m to m − 1. If a 1 is
encountered at level m, then the four corresponding pixels at m − 1 are left
unchanged. Otherwise, any of the four pixels at m − 1 that are not 1 are set
to the pixel value from level m.

The parameters in the encoder are thus: nr, the number of LSBs rounded
at each stage to 0; nd, the number of reduced images generated in the pyramid;
and {tm, m = 1, ...nd}, the thresholds set for each level. The thresholds and nr

cannot be chosen independently, and a workable choice is tm = 2nr for m ≤ 2
and tm = 2nr−1 for 2 < m ≤ nd.

It may be desirable to choose different encoder parameters for text and
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halftone regions. For example, with large values for nr, nd and the thresholds,
the text regions are highly compressible, with smoothed background and re-
moval of bleed-through. However, such parameters can cause visible contouring
and smearing in halftone regions. Instead, we may want a larger number of
gray levels, albeit at low resolution, and might choose smaller values of nr, nd

and thresholds. Unlike the text regions, where significant added compressibil-
ity is achieved by the multiresolution operations, in halftone regions most of
the compressibility is due to the initial rounding.

2.2. Segmentation

To apply different parameters to halftone and text regions, and to allow the
lossless stage to switch to a probability model appropriate for the category and
choice of parameters, it is necessary for the encoder to generate a segmentation
mask. There are many methods for generating a mask covering the halftone
regions, and we describe a particularly efficient morphologically-based one that
uses a binarized version of the image, generated from a global threshold.

The threshold can be chosen from a (subsampled) histogram of image pix-
els. If there is a significant amount of text or line-art, the set of background
pixels will be evident in the histogram. A global threshold for projecting the
foreground pixels can then be chosen at the dark edge of this set, by placing
the pixels in overlapping histogram bins, finding the darkest bin containing a
sufficient fraction of all pixels, and choosing a value near the minimum (dark)
boundary of this bin.

If no threshold value is found, no segmentation is performed, and the image
is compressed as halftone. Otherwise, the image is pixelwise lowpass filtered
using the threshold, giving a foreground mask binary image. From this binary
image, a halftone seed is derived morphologically, and a halftone mask is gen-
erated by binary reconstruction into the foreground mask from the seed. The
seed is generated by a series of closings and openings, which is efficiently car-
ried out on an image pyramid using a sequence of threshold reductions[3], along
with closings and openings. Threshold reductions with threshold values of 1
and 4 are equivalent to dilations and erosions with a 2x2 structuring element,
respectively, followed by subsampling.

3. Lossless Compression

The processing described in the previous section modifies a document image to
make it more compressible, without changing it so much as to detract from its
aesthetic appeal or its intelligibility. The remaining problem is to represent the
resulting array of cleaned-up pixels in a compact manner. Although in some
circumstances we may wish to consider encoding methods which incur further
loss, for simplicity we assume that the lossy stage has resulted in precisely the
image we wish to represent, and accordingly restrict consideration to lossless
compression methods. Throughout this section, the unqualified terms “image”
and “pixel” will refer to the result of the lossy stage.
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3.1. Why Not Generic Lossless Compression?

One possibility would be to use a generic compression routine such as the gzip

program [5]. This approach has the appeal of simplicity and robustness, but
does not take full advantage of what is known in advance about the statis-
tics of the specific class of images being encoded. Still, this approach can
be effective, provided that the two-dimensional pixel array is represented as a
one-dimensional sequence in an appropriate manner. For instance, by encoding
differences between pixels values in an appropriate way, the Portable Networks
Graphics (PNG) format can achieve good compression on graphics images; see
the discussion about “filters” in [1].

Generic compressors like gzip function by discovering patterns in the data
presented to them, but they do not interpret the data in order to draw reason-
able generalizations about similar patterns. Specifically, they do not exploit the
following smoothness property of the joint probability law that can be thought
to govern pixel neighborhoods: small changes in pixel amplitudes in a pattern

correspond to small changes in the probability assigned to that pattern. This
property suggests that an advantage is to be had by sharing statistics among
patterns that are deemed similar.

3.2. Conditioning Contexts and Mixture Models

We thus consider techniques wherein approximate pattern matches are used
when learning the statistical regularity upon which the compression will be
based. Arithmetic coding [14, 13] offers a convenient means of separating the
statistical modeling task from the actual compression task without giving up
performance, thereby allowing the use of specialized statistical models capable
of exploiting the above-mentioned smoothness property. For practical reasons,
the pixels are processed sequentially rather than in the aggregate, but within
that constraint, the use of arithmetic coding allows us to freely specify any
statistical model. The remaining constraint is that the statistical model may
be conditioned only on preceding pixels in the chosen ordering.

The conditioning structure of the statistical model we consider is patterned
after the grayscale extension [10] of the causal-neighborhood context model
originally proposed in [7] for binary images. Specifically, for every pixel location
in the sequence, a set of nearby but strictly preceding pixel locations is specified
as a conditioning context. We consider the simplest case, wherein the pixels are
encoded in raster order and the set of conditioning pixels is specified relative
to each encoded pixel by a constant causal context neighborhood template
(see Figure 1). 1 An estimate of the conditional density is obtained by
appropriately normalizing a Gaussian mixture estimate of the joint density of
the conditioning pixels and the pixel being encoded. Although normalizing
a joint mixture estimated in this way generally does not result in the best
conditional density estimate of comparable complexity [9], this approach is

1 Hierarchical, coarse-to-fine sequencing is also possible, but multiple statistical models
must then be employed, and the conditioning neighborhoods required become more complex.
Furthermore, preliminary results have not demonstrated a clear performance advantage in
the present application that might offset this added complexity.
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(a) (b)

Fig. 1. Two examples of causal context neighborhoods. Solid dots indicate conditioning
pixels, while the unfilled dots indicate the pixel currently being encoded or decoded.

conceptually simple, and in practice has often been found to perform adequately
relative to more involved estimation methods.

After the lossy stage, the image pixels assume values in a relatively small
set. For example, for eight-bit original images and when nr = 3, there are only
thirty-one possible values for each pixel: 0, 8, 16, . . ., 248. Such coarse dis-
cretization is slightly at odds with the smoothness property mentioned earlier,
but we wish to exploit smoothness for the generalization benefit it offers, and
resort to the following artifice. We imagine that the value of each pixel repre-
sents an independent quantization of a hypothetical continuous valued pixel.
The mixture is used to model the conditional density of this continuous valued
pixel, conditioned on specific previous quantized pixel values. The probabil-
ity mass function provided to the arithmetic coder is obtained by integrating
this conditional density over each quantization region. Since the hypothetical
continuous-valued pixel is unavailable for training the mixture, the quantized
values are used instead, after adding to each a small amount of uniformly dis-
tributed noise. Independent quantization of individual pixels is an imperfect
model of the lossy stage, as it does not account for the important spatial inter-
action that occurs there. Nevertheless, we have found that it is a useful model
for deriving a probability mass function for arithmetic coding, as is borne out
in the results presented in Section 4.

3.3. Details of the Lossless Compression Method

The pixels are always processed in raster order. Let x denote the current pixel
being encoded, and let (y1, . . . , yN ) denote a vector of preceding conditioning
pixels specified by a fixed context neighborhood of the type shown in Figure 1.
A set of training images, each deemed similar in nature to the image segment
to be encoded and each processed by the lossy stage using the same parameter
values, is determined. For instance, if the cleaned-up image segment to be
encoded is a line drawing, the training images selected should also be line
drawings, processed using the same parameters in the lossy stage.

These training images are scanned by sliding the context neighborhood
along the image and, at every pixel location for which the entire neighbor-
hood lies within the image boundaries, assembling the values indicated by
the neighborhood into a vector. In this way, a collection of training vectors
{(x, y1, . . . , yN)i, i = 1, . . . , T} is obtained. The number of training vectors T
is targeted to be T ≈ 100K, where K is the number of components to be used
in the mixture model. To control T , the training images are chosen to be of
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sufficient size and number to yield a number of vectors somewhat larger than
the desired T , then subsampling is used to reduce the number to the desired
value. Pseudorandom noise distributed uniformly on (−αδ/2, αδ/2) is added to
each coordinate of every vector thus obtained, where δ is the minimum spacing
between any two graylevels in the training images, and α ∈ [0, 1] is a param-
eter that controls the amount of noise added. Note that this noise is added
only to the training vectors for the purpose of more robustly fitting the mixture
model; it is not used after the model has been fit, i.e., when images are actually
encoded and decoded.

The mixture model consists of K separable Gaussian components, where K
is a parameter that controls model complexity. Because the training and test
image sets are disjoint, choosing too large a K (i.e., one that causes overfitting)
would be signalled by poor performance on the test images. The estimation
of the mixing proportions and component density parameters is accomplished
via the expectation-maximization algorithm [12]. After training, the mixture
model p̂(xc, y1, . . . , yN) is used to provide a conditional density estimate

p̂(xc|y1, . . . , yN ) ∝ p̂(xc, y1, . . . , yN )

for each (hypothetical) continuous-valued pixel in a new image, where the
y1, . . . , yN are now regarded as fixed. To obtain a probability mass estimate
for each actual (i.e., quantized) pixel value x′, p̂(xc|y1, . . . , yN ) is integrated
over the quantization region that supports that value. Specifically, we use the
estimate

P̂r(x = x′|y1, . . . , yN) =

∫ x′
+δ/2

x′
−δ/2

p̂(xc|y1, . . . , yN)dxc

for each quantized pixel value x′, with the exceptions that the lower integration
limit for the smallest x′ is set to −∞ and the upper integration limit for the
largest x′ is set to ∞.

For a given conditioning vector (y1, . . . , yN ), let p(x) denote the probabil-
ity mass function P̂r(x = x′|y1, . . . , yN ). For use in arithmetic coding, p(x)
is approximated by a fixed-precision probability mass function q(x) such that
q(x) > 0 ∀x. For a given p(x), we choose q(x) from the feasible set to mini-
mize the expected ideal bit rate −

∑
x′ p(x′) log2 q(x′), which is equivalent to

minimizing the relative entropy [4] between p(x) and q(x).
Near the borders of the image, some of the conditioning pixels will lie outside

the image. In order to still have a conditional density estimate in such cases,
the estimate p̂(xc, y1, . . . , yN ) is integrated over the coordinates corresponding
to the unavailable conditioning pixels, and the result is used to obtain the
desired conditional density estimate as described above.

Although we explicitly account for the quantized nature of x when obtain-
ing P̂r(x = x′|y1, . . . , yN ), we do not make any adjustment for the fact that
the conditioning pixels are also quantized. However, little is at stake here: the
consequence of quantizing the conditioning pixels is to perturb the location of
the line parallel to the x-axis in (x, y1, . . . , yN)-space along which the condi-
tional density is evaluated. If the perturbation is small, then the smoothness
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property mentioned in Section 3.1 suggests that the resulting change in the
estimated pixel probabilities will likewise be small. In contrast, accounting for
the quantized nature of x is essential, as the probability mass assigned to the
various values that x assumes directly determines the number of bits required
for encoding those values.

Arithmetic coding is carried out as described in [8], using a code-register
precision of 16 bits and a 15-bit-wide carry-control register.2 This allows the
two registers to coexist as fields in a single 32-bit hardware register without
involving the sign bit. When an image is encoded, a header is first created indi-
cating: the dimensions of the image, the minimum spacing δ between graylevels,
and the minimum and maximum graylevels that occur in the image. Since each
of these quantities is a relatively small integer, the number of bits needed for
this header is negligible compared with the number needed for the rest of the
image. After the last pixel has been encoded, the code- and carry-control reg-
isters are flushed into the code bit stream and the procedure terminates. The
bits thus produced are packed into bytes and written into a binary file; this
file constitutes the compressed representation of the image. It has been con-
firmed experimentally that decoding this compressed representation results in
an exact bit-for-bit replica of the image.

4. Results and Conclusions

Experiments were performed on a set of nine 512 × 512 subimages of 300 dpi,
8 bpp grayscale scans of selected pages of the March 1998 issue of the IEEE
Transactions on Image Processing. For clarity, we compress segments of various
types separately, rather than switching models on the basis of the segmentation
mask as would be done in a practical system. Accordingly, three subimages were
selected in each of the following categories: text, line drawings, and halftone.
For each image in each category, the compression technique described in this
paper was applied, using the other two images in the category to train the
mixture model.

To find suitable combinations of parameter values for the lossy stage, all
combinations of the parameter values nr ∈ {2, . . . , 6}, nd ∈ {3, 4, 5}, and
threshold sequences among those listed in Table I were applied to each of the
nine images. The compressibility of each result was estimated by the mini-
mum of the bit rates obtained over all techniques described in Appendix A.
The minimum rate and mean-square error (MSE) together define a point in
the rate-MSE plane for each of the sixty candidate parameter combinations for
each image. The convex hull of these points was determined using the qhull

program [2] for each original image, and the parameter value combinations that
appeared most frequently among vertices of the facets facing the origin were
adopted for use in testing the lossless stage. The (nr, nd, {tm}) triples found
in this way were: (5,3,3), (4,3,1), (3,3,2), (3,3,3), and (2,3,3). Several context

2 Other versions of arithmetic coding could be used as well, but care must be taken to
properly interface the statistical model described above to the coder, particularly if conversion
to an intermediate binary source representation is required for the coder to operate.
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TABLE I
Threshold sequences used in
lossy stage.

Label tm, m = 1, . . . , 6

1 {16, 8, 8, 8, 8, 8}

2 {8, 8, 4, 4, 4, 4}

3 {4, 4, 4, 4, 4, 4}

neighborhoods and values of K and α were tried for the lossless stage; no one
set worked best across all images. Figure 2 shows the MSE performance of the
overall approach, averaged across images in each category using leave-one-out
crossvalidation, for K = 256, α = 0.5, and the context neighborhood shown in
Figure 1a. Significantly larger values of K were found to result in overfitting.
Also presented in Figure 2 are results for the lossless methods described in Ap-
pendix A, and for JPEG applied to the original images using several different
quality factors. It can be seen that the proposed lossless technique is compet-
itive at all rates, and outperforms most of the reference techniques at all but
the highest bit rates.

JPEG can be seen to generally outperform the proposed technique in Fig-
ure 2. However, MSE is not the whole story, as larger MSE can correspond
to improved intelligibility. An example of this is in Figure 3, where JPEG is
more faithful to the original scan, but the proposed technique results in greater
intelligibility by removing bleed-through and preserving edges.

Based on these results, we tentatively conclude that the proposed tech-
nique can be an attractive alternative to established methods when compressing
grayscale document images, as it offers good MSE performance while maintain-
ing or even improving intelligibility. The lossless stage is interesting in its own
right, as it appears to outperform several standard approaches, particularly
when the image supplied to it has low complexity.

Appendix

A. Lossless Image Compression Techniques used for Reference

The following lossless compression techniques for grayscale images were used
for reference purposes in this study.
− BTPC: Binary Tree Predictive Coding (Version 4.1) by John A. Robin-

son. The program used (in lossless mode) was cbtpc, available from
http://www.engr.mun.ca/∼john/btpc.html.

− CALIC: Context-based, Adaptive, Lossless Image Coder (arithmetic cod-
ing version) by Xiaolin Wu and Nasir Memon. The program used was
enCALICa.sun, available from ftp://ftp.csd.uwo.ca/pub/from wu/v.arith.

− HIST: A rough measure of compressibility obtained by computing the en-
tropy of the normalized image histogram, treating each pixel indepen-
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Fig. 2. Average crossvalidated MSE-Rate performance for each of the three image categories.

Fig. 3. Left: A 256 × 256 patch from one of the original text images. Middle: result of
JPEG compression at 0.97 bpp (MSE = 5.84). Right: result of proposed scheme at 0.78 bpp
(MSE = 7.58).

dently.

− FELICS: Fast, Efficient, Lossless Image Compression System by Paul G.
Howard and Jeffrey Scott Vitter. The program used was mgfelics, avail-
able from http://www.cs.mu.oz.au/mg/mg-1.2.1.tar.gz.

− JPEG-LS: JPEG-LS Reference Encoder, Hewlett-Packard LOCO-I imple-
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mentation. The program used was locoe, available from
http://www.hpl.hp.com/loco/software.htm

− PNG: The pnmtopng open-source program (version 2.37.1) by Alexander
Lehmann, Willem van Schaik, and Greg Roelofs. Available in
ftp://swrinde.nde.swri.edu/pub/png/applications. This program is based
on the Portable Networks Graphics (PNG) library [1].

− SP: Arithmetic coding version of the lossless image compression program
by Amir Said and William A. Pearlman. The program used was sp compress,
available from
http://www.cipr.rpi.edu/research/SPIHT/EW Code/lossless.tar.gz.
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