
An Iterative Algorithm for Optimal MessageReognition in Linguistially ConstrainedDoument Image DeodingKris Popat, Dan Bloomberg, and Dan GreeneXerox Palo Alto Researh Center, Palo Alto CA 94304, USAfpopat,bloomberg,greeneg�par.xerox.omAbstrat. A means of inorporating soft linguisti onstraints in a do-ument image deoding system is desribed. Doument image deodingreognizes text by �nding a most probable path through a hypothesizedMarkov soure model for a given degraded doument image. The lin-guisti onstraints are expressed by a sequential preditive probabilistilanguage model. Searh is aomplished by iteratively resoring ompletepaths using onditional language model probability distributions of in-reasing order, expanding state only as neessary. This approah resultsin a solution that is provably optimal with respet to the spei�ed soure,degradation, and language models. Simulation results are presented fora reognition system wherein the douments are one-dimensional or-rupted streams of Amerian Morse Code pulses. This simulation pre-serves the essential features and hallenges of text line deoding in asimpli�ed setting that highlights the important algorithmi issues.1 Best-Path Searh in Doument Image DeodingDoument image deoding (DID) [5, 6℄ is a method of text reognition in do-ument images that is based on a ommuniations systems view of the dou-ment omposition, printing, degradation, and sanning proesses. Among theadvantages of DID are high reognition auray in situations where extensiveustomization is allowable, the ability to reognize some higher-level struturealong with the text, and the ability to extend and improve the system within aonsistent probabilisti framework. In the work on DID reported until now, thehigh reognition auray has been ahieved despite a lak of any prior spei�-ation of whih reognized strings are linguistially valid.In DID, doument images are modeled as having been produed by a Markovsoure (a probabilisti �nite-state mahine). The soure begins in a distinguishedstart state and terminates in a distinguished stop state. Eah transition ausesthe imaging of a harater template (bitmap) on the page at a urrent ursorloation, and advanes that loation in preparation for printing the next har-ater. The harater template may be whitespae. Formally, eah transition inthe soure is assigned a four-tuple onsisting of: a harater template, a two-dimensional displaement by whih to advane the ursor, the prior probability



of following the transition, and a string label. Every omplete path through thesoure thus de�nes a doument image and an assoiated transription: the imageis the union of the bitmaps imaged on eah transition, and the transription isthe onatenation of the assoiated string labels.For a given observed doument image, reognition involves �nding a ompletepath through the hypothesized Markov soure that best explains the observedimage. Spei�ally, a omplete path is sought that is most probable onsideringthe entire image as evidene, where the probability is omputed on the basisof the prior probabilities of the transitions and the likelihoods of the assoiatedimaged templates, allowing for possible orruption of the imaged templates byan assumed probabilisti degradation proess. Dynami programming is used to�nd suh a best path.1.1 Separable Markov Soures and Text Line DeodingIn many instanes, the doument an be satisfatorily modeled by a two-levelMarkov soure struture in whih the top level haraterizes and aounts for thevertial layout of a doument page; the transitions at that level orrespond tosubsoures desribing individual text lines [4℄. Suh a soure is termed separable.Beause linguisti onstraints bear most strongly on reognition within text lines,we fous on the deoding of individual text lines. Thus, the problem of interestis to �nd a best omplete path through a subsoure representing a text line.In the absene of any linguisti onstraints, a suitable subsoure for text linedeoding onsists of a start state, a single interior state, and a stop state. Theinterior state has one self-transition for eah harater template. Control om-menes in the start state with the ursor at a spei�ed horizontal loation, thentransitions to the interior state and repeatedly self-transitions bak to that state,eah time imaging a harater and advaning the ursor, and �nally terminatesin the stop state, again at a loation that has been spei�ed in advane. Typi-ally, the ursor loations spei�ed for the start and stop states are the left- andright-most printable pixel loations in the image, respetively. A omplete paththrough this subsoure an be represented by a trellis diagram, wherein nodesrepresent horizontal pixel loations along the baseline, and edges represent thetransitions that together make up the omplete path. Eah edge is labeled with asore that is the produt of the prior probability of the transition and the likeli-hood of the orresponding imaged template in the spatial loation that the edgespans. Finding the highest-sore path an be aomplished by a straightforwardappliation of dynami programming.2 Inorporating Linguisti Constraints in DIDAs it is desribed above, DID makes no use of prior knowledge about whih re-ognized transriptions are more linguistially valid than others; it simply hoosesthe transription orresponding to a path with highest posterior probability. Itis desirable from the point of view of error rate to provide DID with a means



of preferring linguistially more valid transriptions over less valid ones. Severalapproahes are possible. Coneptually, the simplest is to modify the dynamiprogramming searh to provide a multipliity of high-probability paths ratherthan a single one, then selet among them on the basis of linguisti validity [9℄.Preliminary experiments following this approah reveal a potential for signi�-ant redution in reognition error rates in some ase, but only if the number ofretained paths is very large (on the order of 500 per text line) [8℄.In priniple, a more diret way of inorporating linguisti onstraints in DIDis by modifying the Markov soure model so that the states enapsulate linguis-ti ontext. We are primarily interested in soft linguisti onstraints, whih anbe expressed probabilistially within this linguistially-expanded Markov soure.The main obstale to doing this in a diret way is that the requisite number ofstates grows exponentially in the length of the linguisti ontexts being onsid-ered. In speeh reognition, the potential exponential explosion of states (andhene andidate paths) is usually addressed by modifying the searh algorithmto explore only a small fration of andidate paths, namely those deemed mostpromising as the searh unfolds. While this approah appears to be useful inpratie in �nding good transriptions, it provides no guarantee that the pathwith highest probability will be atually be found [2, Chapter 6℄.In this paper we onsider an alternative searh strategy that is guaranteedto �nd the most probable path, while in pratie avoiding exponential growthin spae and time omplexity. Linguisti onstraints are expressed by a languagemodel, whih measures linguisti validity by assigning onditional probabilitiesto haraters in a sequene. The idea is to �nd a best andidate path usingupper bounds on the language model probabilities, then to resore this pathusing improved bounds or atual language model probabilities, repeating thesetwo steps until the best andidate path found has been sored only with atualprobabilities rather than upper bounds. The suess of this approah in avoidingexponential growth relies on the empirial fat that the likelihoods (templatemathes against the image) play a muh greater role in determining the bestpath than do the probabilisti linguisti onstraints. In pratie, the linguistionstraints exert only a \tiebreaking" inuene.2.1 Probabilisti Language ModelLinguisti validity an be measured by means of a probabilisti language model,whih in its full generality is a probability distribution over all �nite strings overa given alphabet. For use in doument image deoding we restrit the languagemodel to be fatorable as a sequene of probability distributions over individualharaters, eah onditioned on a subset of preeding haraters. Let the alpha-bet be A, and let v1; : : : ; vn denote a string with vi 2 A; i = 1; : : : ; n. Let � bea termination symbol, and let A0 = A [ f�g. We view strings as being formedby the following proess. Charaters are generated sequentially aording to asequene of onditional probability distributionspi(vijv1; : : : ; vi�1) = pi(vij�i(v1; : : : ; vi�1)) (1)



where vi 2 A0, v1; : : : ; vi�1 2 A, i = 1; 2; : : :, and the funtion �i(v1; : : : ; vi�1)maps ontexts into equivalene lasses. The string terminates when the symbol �is generated; in terms of the Markov soure this orresponds to a transition intothe stop state. This is essentially a tree soure similar to the soure desribed in[7℄, but di�ers from it in its use of a termination symbol and in the fat that itindues a valid probability distribution over all �nite strings.For simpliity in this paper, we remove the dependene of p in (1) on i, andrestrit �i(v1; : : : ; vi�1) to be of the form�i(v1; : : : ; vi�1) = � (v1; : : : ; vi�1) if i � N(vi�N+1; : : : ; vi�1) otherwise (2)for a �xed small integer N . With these restritions, (1) is referred to as a hara-ter N-gram language model, hereinafter referred to simply as an N -gram model:pi(vijv1; : : : ; vi�1) = p(vijvi�Ni+1; : : : ; vi�1) (3)where Ni = minfi; Ng. Although the searh tehnique to be desribed hereinremains pratial using a lass of language models more general thanN -gram,N -grams are widely used and are fairly e�etive in apturing important statistialregularity in natural language strings, so that muh of the potential improvementin reognition auray aruing from the use of arbitrarily omplex languagemodels is preserved under this restrition, and muh is gained in the way oflarity of exposition.For a �xed N -gram, we de�ne a sequene of auxiliary funtions q0; : : : ; qNi�1as qk(vijvi�k ; : : : ; vi�1) = maxvi�Ni+1;:::;vi�k�1 p(vijvi�Ni+1; : : : ; vi�1) (4)whih for eah k provides an upper bound on the probability that an be assignedby the N -gram to vi when immediately preeded by (vi�k ; : : : ; vi�1). For exam-ple, q0 spei�es the maximum probability that an be assigned by the model tovi in any ontext, while at the other extreme, qN�1 is simply another name forp. Note that for any �xed string setion (vi�Ni+1; : : : ; vi), qk is noninreasing ink.3 Inorporating an N-gram Language Model inBest-Path SearhThe posterior probability of a omplete path through the Markov soure anbe expressed as the produt of two fators: the likelihood of the path giventhe observed image, and the prior language-model probability assigned to theassoiated transription. From the point of view of minimizing error rate on agiven doument image, we wish to �nd a maximum posterior probability (MAP)omplete path [6℄ in a pratiable manner. Inspired by a tehnique for reduingomputations in standard DID [4℄, we propose �nding a MAP path by iteratively



re�ning andidate paths, eah time using improved upper bounds on linguisti-ally weighted edge sores. However, departing from [4℄, we apply the searhwithin text lines, use a sequene of upper bound funtions derived from a lan-guage model, and inur an expansion of state on eah iteration. If the numberof iterations neessary for onvergene is small, as is expeted when the imagesare relatively lean, then the expansion will not be prohibitive.3.1 Iterated Complete-Path Searh Algorithm using N-gramsWe assume an N -gram language model with the funtions p and fq0; : : : ; qNi�1gas de�ned above. Initially, a standard DID trellis is onstruted as desribed inSetion 1.1, exept that the sore on eah edge is now the produt of the tem-plate likelihood and the unonditional upper bound q0 on the language modelprobability assigned to the orresponding harater label. An initial best andi-date path �(0) is found by dynami programming in the usual way. The followingtwo steps are then iterated:1. For eah non-maximal node along the urrent andidate best path �(j), a newnode orresponding to the same spatial loation is reated, and a ontextlabel is assoiated with the new node orresponding to the transriptionof the longest unambiguous path segment leading to it. A node is deemedmaximal if its assoiated ontext label is of length Ni � 1.2. A new andidate best path �(j+1) is found in the expanded graph by re-striting the dynami programming searh to onsider only those nodes ineah spatial loation that have the most spei� ontext onsistent withpath history. Edge sores used in the searh are the produt of the templatelikelihood and highest-order upper bound q (or probability p, in the ase ofa maximal originating node) onsistent with the originating node's ontextlabel.The searh terminates when all nodes along �(j) in step (1) are found to bemaximal; suh a path is provably MAP with respet to the language model andtemplate likelihood sores.4 Simulation on a Demonstration ProblemAppliation of the searh tehnique desribed in Setion 3 to text reognition ismost easily understood and analyzed in terms of a one-dimensional demonstra-tion problem. The essential ingredients are a message soure, a signaling shemethat involves the onatenation of variable-width templates, and a degradationproess whereby the onatenated templates are orrupted to yield the observedwaveform to be deoded.



Table 1. Amerian Morse Code.Letter Codeword Letter Codeword Letter Codeword Letter CodewordA �- K -�- U ��- 5 �����B -��� L �-�� V ���- 6 -����C -�-� M -- W �-- 7 --���D -�� N -� X -��- 8 ---��E � O --- Y -�-- 9 ----�F ��-� P �--� Z --�� 0 -----G --� Q --�- 1 �---- � �-�-�-H ���� R �-� 2 ��--- , --��--I �� S ��� 3 ���-- ? ��--��J �--- T - 4 ����-4.1 Demonstration using Amerian Morse CodeSpei�ally, we take the harater templates to be disrete waveform segmentsobtained from the odewords of Amerian Morse Code (Table 1), with eah `�'replaed by the numeri sequene (2; 3; 2; 1) and eah `-' replaed by (2; 3; 3; 2; 1).A letter spae harater is represented as (1; 1; 1; 1; 1). When a string is \typeset"into a waveform, adjaent templates are separated by the spaer element (1). Forexample, the string `THE' maps to the waveform(2,3,3,2,1,1,2,3,2,1,2,3,2,1,2,3,2,1,2,3,2,1,1,2,3,2,1)After the waveform is reated from the original text string, it is degradedby passing it through an additive white Gaussian noise hannel. Spei�ally,pseudorandom noise is added to eah element in the waveform, where the noiseis independent and normally distributed with mean zero and variane �2.Constrution of the deoding trellis requires that the spatial loations orre-sponding to the start and stop states be spei�ed. In atual pratie these wouldbe set to the left and right extremal positions, respetively, at whih a templatean be imaged. To failitate synhronization, a speial linguistially inert single-spae template would be introdued into the set of harater templates, andassigned a probability suÆiently small to disourage its gratuitous insertion.When onstruting and mathing linguisti onditioning ontexts, all instanesof this single-spae template would be ignored. For simpliity of implementa-tion, a single-spae template is not used in the work reported here; instead, it isassumed that the true start and stop positions are known exatly in advane.The body of text seleted for preliminary experiments is an eletroni versionof Lewis Carroll's Through the Looking Glass [1℄, with all haraters mapped toupper ase, and only those symbols listed in Table 1 along with newlines andspaes retained. Blank lines are omitted, and the remaining 3,118 lines of textare divided into two equal-size portions: a training segment, onsisting of theeven-numbered lines, and a test portion, onsisting of the odd-numbered lines.



4.2 Implementation of the N-gramIn the present study, an N -gram language model is implemented using a trie.Spei�ally, an Ni-long window is displaed sequentially from left to right alongthe training text, terminating alternately at every position in the text. At eahposition, haraters in the window are sanned from the left, and the trie is de-sended (or grown, as neessary) reursively downwards, inrementing the ountof eah node enountered. The leaf ounts are transformed into the requisite N -gram onditional probability estimates by adding a smoothing fator � to eah,then normalizing.Upper bounds are stored in the same trie. This is possible beause of themanner in whih training is done. Spei�ally, by sliding the ontext windowexhaustively along the training text, it is ensured that for every suÆx of a pathfrom root to leaf, there exists a node in the trie that an be reahed by desendingthat path-suÆx from the root. This allows the upper bounds of order k to bereorded at the level-k nodes of the trie; in pratie these are obtained by makinga seond pass through the training data using the probabilities estimated on the�rst pass.Now onsider applying the trained language model to sore new data. Whilesmoothing allows valid onditional probabilities and upper bounds to be assignedto haraters in a given ontext that were missing in the training data, it doesnot help when the required ontext node itself has a ount so low as to makethe probability estimate unreliable, or worse, when the ontext node is missingfrom the trie entirely. In this not-so-unommon situation, \baking o�" is used:suÆxes of the desired ontext of dereasing length are tried until the resultingontext node has a ount that is larger than a spei�ed threshold value m. Insuh ases, the resulting ontext nodes are onsidered to be of maximal orderwhen testing for termination of the iterated best-path searh.4.3 N-gram ParametersThe existene of a ount-based baking-o� strategy mitigates the data sparsityproblem, and allows N to be larger than might otherwise be warranted [3℄.Several ombinations of values of N , �, and the ount threshold m were tried intraining the language model on the training data, and the resulting log-likelihoodvalues on the test data noted. Suitable rossvalidated parameter values were thusfound to be N = 4, � = 0:025, and m = 5, resulting in an estimated oding oston the test data of 2:24 bits per harater.4.4 Preliminary ResultsDoument Image Deoding was implemented for the Morse Code problem usingdata strutures suitable for implementation of the searh method desribed inSetion 3. Errorful transriptions were obtained for a variety of values of thehannel noise intensity parameter �, ranging from 0:05 to 0:50. The resultingtransription error rates for line-by-line deoding for the �rst fourteen lines of



the test data, as measured by edit distane to the original text, is shown inFigure 1. For omparison, the error rates using the Viterbi algorithm without aontext-dependent language model are also shown. From the graph it is evidentthat inorporating the language model via the proposed searh algorithm signif-iantly redues error rates in this example. One of the harateristis of the pro-
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