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Abstract

Themorphologicabperatorof a hit-misstransformationppening,andclosingaregeneralized
in a numberof ways. The new operatorsare usefulfor solving a variety of binaryimageanalysis
problemsthat involve patterndetectionand reconstruction.Generalizetbpeningsare developed
by replacingerosionswith hit-missoperators.Thesenew openingsareshavn to be anti-extensve,
idempotentandcenterindependet. Similarly generalizectlosingsare developedandrelatedto
openingsby duality. Additionally, the hit-miss operatoris further generalizedoy replacingthe
erosionswith rank orderoperatorsn orderto improve the robustnesf patternmatchesasedon
staticticalcriteria. Someapplicationsof the new operatorso documentimage analysisare also
provided.
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1 Introduction

Themorphologicabpeningandclosingoperatorsatisfyseveralelegantandusefulpropertiessuchas
centerindependencagdempotenceandanti-extensvity or extensvity, in additionto the generalmor-
phologicalpropertiesof translationinvarianceandincreasing.However, becausehey arerestrictedto
only “hits” and“don’t-cares’in thestructuringelemen{abbreriatedasSE),they areseverelylimited in
generality The hit-missoperator (HMO), onthe otherhand,is anextremelygeneralpattern-matching
operatoyintroducedn [16]. It is ageneralizatiorof the erosionto SEsthatspecify“misses’aswell as
“hits”, but it lacksthefundamentapropertyof theerosionto beincreasing Erosionshave somekind of
ubiquitousnaturesinceall translation-ivariantandincreasingmagesetoperatorsanbe represented
asa union of erosiong[10, 9]. Similarly, union of hit-miss operatorscanrepresenvariouskinds of
translation-iwariantoperatorg2, 1].

Theopeningoperatolis anerosionfollowedby adilationwith thesameSE.Hence jt canbeviewed
asasequencef two operatorgerformingpatterndetectionand patternreconstruction.The opening
hasseveralinterestingproperties.Specifically it is independentrom the centerof the SE becaus¢he
imagetranslationdor theerosionanddilation, indirectlyinducedby the SE,arein oppositedirections.
Theopenings idempotenbecauseachpixel remainingafterthe erosionrepresents patternmatchof
the SE elemento theoriginalimage,andis subsequentlgilatedby the SE to reproducesxactly those
pixelsin the original imagethat wereresponsibldor the initial patternmatch. Whenthe openingis
repeatedthe erosionre-corvertseachdilatedsetof pixelsto the samesetthat was obtainedafter the
first erosion.The openingis alsoanti-extensie sincethe openedmageis alwayscontainedwithin the
originalimage.

The initial motivation for this work wasto constructgeneralization®f the openingand closing
operatorghatinclude SEswith bothhits andmissesandthatsharemostof the specialpropertiesof the
standardpeningandclosingoperatordor applicationsencountereth documentmageanalysis.From
the foregoing, one might guessthatan HMO followed by a dilation by only the hits in the SE would
be onesuchgeneralizatiorfor the opening. This generalizepeningwould reproduceall the hitsin
the original imagefor which the HMO gives an exact patternmatch. Thus, it would extract shape
features,n their entirety from the image,andthe resultwould be a fixed point of simple operators
relatedto the specifiedshapesUseof suchgeneralizedpeningswith SEscomposeaf both hits and
missesjmplicitly broadensur view of the patternghatarebeingmatched. WhenSEsarecomposed
of hits only, they arenaturallyviewedin termsof shapedo be matchedn theimage.But whenmisses
areintroducedinto the SE, we can alternatvely considerthat the patternsbeing matchedare short-
rangetextures The generalizedpeningthenextractstextural componentsagainin their entirety The
dividing line betweenshapeandtextural propertiess not well defined,but short-rangdexture canbe
intuitively understoodasthe local geometricrelationsbetweenhits and missesin theimage. This is
exactly whatis specifiecby the SE.

In the standardpeningandclosingoperatorsthe foregroundandbackgroundixelsareimplicitly
treateddifferently by usingSEsthatspecifyonly foregroundpixels. However, whengeneralizingrom



the HMO, wherebothforegroundandbackgroundpixels are specified onemay alsowish to consider
the casewherethe subsequentilation involvesthe backgroundgixels.

Correspondindo ary generalizetpeningoperatoy thereis a dual generalizedtlosing that must
satisfy the samegeneralset of propertiesasthe generalizedbpening,andin factis equvalentto a
generalizedpeningon thebackgroundvith anappropriateljtransformedsSE.

Similar generalizationgan also be madeby usingrank order operators.A rank orderoperator
on a binary imageis equvalentto a thresholdeccorvolution by a binary SE. Whenthe SE consists
only of hits, asin the usualdefinition, the rank order operatoris shift-invariantand increasing,and
the morphologicalerosionanddilation are specialcases.Rankorderoperatorsare usefulfor pattern
matchingbecausehey have greateimmunity thanerosionto noiseandshapedistortion, but they are
more complicatedcomputationally When a rank orderoperatoris followed by a dilation by the SE,
a type of openingresultswhere shapesspecifiedby the SE that are only partially matchedby the
rank ordet are reproducedn their entirety on the resultingimage. In analogywith the generalized
openinggderivedfrom the HMO, theHMO canfirst begeneralizedo arankorderoperatothatusesa
SE with both hits andmisses.This rank orderoperatorcansubsequentlype generalizedo anopening
by dilating the resultof the rank orderby only the hits in the SE. As with the simplermorphological
operatorsthemotivationfor usingsuchoperatorsequencess theexpandedsetof invarianceproperties.

In the following sections,we first defineandthen derive propertiesof the generalizedopenings
andgeneralizectlosings. Therearetwo typesof each,thatwe call foregroundandbadgroundopen-
ingsandclosings,andthataresimply relatedto eachother The foregroundoperatorsareidempotent,
whereaghe backgroundoperatorsare only fixed pointsof openingby the hits. We thendiscusstwo
generalization®f the HMO thatimprove the robustnesf the patternmatch. The first is a compu-
tationally efficient methodwe call a blur match,that givesimmunity to noisenearshapeboundaries.
A moreflexible methodis the thresholdedcorvolution (or rank orderfilter), that givesan optimum
rule (accordingto Bayesiandecisiontheory)for detectingshapesorruptedby saltandpeppemoise.
Finally, the hit-missrank order operatoris extendedto a generalizedank order openingthat allows
reconstructiorof partially occludedshapesandtextures.

2 Generalized Opening

Let theplanarset X represengabinaryimageandlet the compactset A be a structuringelement.The
erosione& anddilation @ of X by A aredefinedas

XA = {z:A4:CX}=(1X -2 Q)
2€EA
XoAd = {:A+2nX#0}=J X +2 (2)
2€EA

whered = {—a : a € A} isthereflectionof A with respectotheoriginandX +z = {z+z:2 € X}
is thetranslationof X alongthepixel vector+z.



The hit-miss transformationof X by a disjoint pair (A, B) of SEsis definedin [16] asthe set
operator
X®((A,B)=(X6A)N(X‘eB) 3)

whereA is the“hit” SEandB is the“miss’ SE.By “hits” we will meanin this paperintersectiorwith

the foregroundof X, whereaghe “misses”will referto intersectionwith the backgroundof X, i.e.,

the setcomplementX“. Thusthe HMO is theintersectionof a foregrounderosionanda background
erosion.For brevity, we will oftenreferto thedisjoint pair (A, B) of SEsasa single SEwith both hits

andmisseslt shouldbe notedthatthey arebothdefinedwith respecto the samecenterposition.

Let us correspondhe sets X, A, B with their indicatorfunctionsz, a, b, which are binary image
signals;i.e.,z(n) = 1if n € X andz(n) = 0 if n ¢ X, wheren is a pixel location. Thenthe erosion
X & A is equialentto athresholdedorvolution of theimagez with the binary impulseresponse:.
Specifically if U : (—o0,00) — {0,1} is the unit stepfunctiondefinedby U(s) = 1 if s > 0 and
U(s) = 0if s <0, |A| denoteghe numberof pixelsin thewindow set A, and+ denotesorvolution,
thenthebinarysignal

Ulxxa—|A|) 4)

is the indicator function of the set X & A. Similarly, asdiscussedn [7], the HMO X®(A, B) is
equialentto the minimumof the two thresholdedinary corvolutionsU (z * a — |A|) andU[(1 — x) *
b — | B|]. As suchtheHMO on binaryimagescanalsobeviewedasa perception[11] with two-valued
weights.Namely the binarysignal

Ulz x (a = b) — [A]] (5)

is theindicatorfunctionof X®(A, B). Becaused and B aredisjoint, the nonzerovaluesof the mask
signala — b, which containsthe weightsfor the perceptronare+1 for the pointsin A and—1 for the
pointsin B. Alternatiely, the erosionX & A canbe viewed asa binary matchedfilter that detects
thelocationsof theforegroundtemplateA in theimage X, whereathe HMO X ®( A, B) is amatched
filter that detectsthe combinationof the foreground/backgroundemplatepair (A, B). Suchbinary
matchedilters arediscussedn [4, 15].

The ordinary openingX0A = (X © A) @ A of X by A is an erosionfollowed by a dilation.
Replacingthe erosionby anHMO leadsto whatwe call a “generalizecopening”!

Specifically we definethe generlizedforegroundopeningof X by (A, B) asthesettransformation

U(X; A, B) =X ® (A, B)] & A. (6)

Whenever (A, B) areimplied, we shallusethesimplernotation¥ (X ). Thusthegeneralizedoreground
openingis anHMO followedby a dilation with the hit SE A. It is a setconsistingof the union of hits
for all matchesof theHMO.

As anexampleof the useof the generalizedoregroundopening,supposeve wish to extractfrom
theimageall lower edgesof horizontallines thathave a given minimum lengthof 20 pixels. This can

YIn recentwork [17, 5] on morphologicaloperatordasedon lattice theory an “opening” is definedasary increasing,
anti-extensiveandidempotenbperator Whatwe definein this paperas“generalizedpeningsiacktheincreasingroperty

4



be accomplishedvith a generalizedoregroundopeningusingthe SE in Figurela. Thefilled circles
are hits andthe empty circle is a miss, andthe referencepoint for the SE is indicatedby a crossin
oneof the hits. WhenW is appliedto theimagein Figure 2, the extractededgesareshavn in Figure
3a. Becauseve areusingonly onemissnearthe centerof the SE, theseedgesextendinto theregions
wherethehorizontalandverticallinesintersectlf suchextensionis notdesiredjt canbe preventedby
placingtwo missesatthe endsof the SE. If we wishto sieve the horizontallines,finding all horizontal
lines of width equalto or lessthan3 pixels (for example),the SE in Figure 1b canbe usedwith the
generalizedoregroundopening. The resultwhenappliedto theimagein Figure2 is shovn in Figure
3b. As expectedthethin lines,in their entirety have beenextracted.
We now derive severalpropertiesof thegeneralizedoregroundopening.

PROPERTY 1 . Thegenearlizedforegroundopeningis anti-extensivej.e.,
U(X;A, B)CX0ACX . (7

Proof. SinceX®(A, B)C X & A andsincedilationis amonotonancreasingperatori.e., XCY
— X @ ACY & A), wehave

U(X)C(X©A)@® A= XOACKX.
O

PROPERTY 2 . The generlized foreground openingis centerindependentj.e., independenbdf the
locationof the SEpair; thus,for all vectos z,

U(X;A+2,B+2)=¥(X; A, B). (8)

Proof. Intuitively, a shift of the centerof (A, B) by z causesan equialentshift in the location of
theHMO, andanoppositeshift in thelocationof a dilation. Hencethe sequencef HMO anddilation
is centerindependentFormally,

X6(A+2)=(X©A)—2; X°6(B+2)=(X°6B)-—=z.

Hence,S = X®(A+ 2, B+ 2) = [X®(A,B)] — 2. SinceS @ (A + z) = (S & A) + z, theproof of
(8) is complete. a

By asimilaramgumentasin the previousproperty all generalizesperatorslefinedin this paperare
independenodf thelocationof the SE pair.

PROPERTY 3 . Thegenealizedforegroundopeningis idempotentj.e.,

UU(X)] = ¥(X) . (9)



Proof. Firstnotethat,sinceV is anti-extensve,we have
P[T(X)]C ¥ (X) (10)
To prove (9) we needonly to show that ¥ [¥(X)] D¥(X). LetY = X®(A, B). Then
UV(X)oA=(Y®A) S A=YOADY (11)

where® is the ordinaryclosing. SinceW (X )C X it follows that[¥(X)] DX° andhence[¥ (X)]|c ©
B>X°¢o B. Then,sinceYC X°¢ o B, we have

[¥(X)]°e BOY (12)
From(11)and(12)it followsthat¥(X)®(A, B) OY, whichin turnyields
VYU (X)) DY @ A=T(X) (13)

Hencefrom (10) and(13)it followsthat¥[¥ (X )] = ¥(X), andtheproofis complete. O
We canalsodefinea generlizedbadkgroundopeningasthefollowing settransformationy(-):

PY(X;A,B)=[X®(A,B)|®B. (14)

Thusthe generalizedackgroundpeningis an HMO followed by a dilation with the missSE. As we
dofor ¥, wheneer (A, B) areimplied, we will usethesimplernotation:(.X).

In Figures4aand4b, we shav the generalizedackgroundpeningof theimagein Figure2, using
the SEsin Figurelaandlb, respectrely. Thesesetsarecontainedwithin the backgroundf Figure?2.
The generalizeackgroundopeningis a setconsistingof the union of missesfor all matchesof the
HMO.

PROPERTY 4 . Thegenerlizedbadkgroundopeningof X is a subsebf X¢; i.e.,
¥»(X; A, B)C X°OBC X° . (15)
Proof. SinceX®(A, B)C X¢ o B andsincedilationis monotondancreasingwe have
¥(X)C (X°© B) ® B = X°OBC X"
O

LEMMA 1 . For anysetS, thesetS @ A is a fixedpoint of theopeningby A. Similarly, thesetS © A
is a fixedpoint of the closingby A.

Proof. Seeg[16, p.53]. O
This Lemmaimpliesthefollowing property



PROPERTY 5 . Thegenealizedforegroundopeningby (A, B) is afixedpointof theopeningby A4, i.e.,
[U(X; A, B)]0A = ¥(X; A, B) (16)
andthegenerlizedbadkgroundopeningby (A, B) is a fixed-pointof theopeningby B, i.e.,
[(X; A, B)JOB = (X; A, B) . (17)

By performingboth operators¥(X) and(X), i.e., by dilating the HMO with the hit SE and
separatelyvith themissSE,we obtaintwo new binaryimageswhich aresubset®f theoriginalimage
foregroundandbackgroundrespectrely. Thustheoriginalimageplaneis partitionednow into 3 setsof
pixels: (i) thepixelsof ¥(X), whicharecontainedn X; (ii) thepixelsof (X ), whicharecontainedn
X¢; and(iii) therest,whicharethepixelsof [¥(X) U ¢(X)]¢. Thisinformationcannotbe castsimply
asa binary image. We needthreedifferentgray levels, onefor eachof the threeclassesf pixels.
Clearly, the pixel class(iii) is theleastimportantandcanbetreatedasthenew “background”.

Thefollowing propertyrevealsthatthereis a closerelationshipbetweeny andq.

PROPERTY 6 . Thegenerlizedbadgroundopeningof X by (A, B) is equalto the generlizedfore-
groundopeningof X¢ by (B, A); i.e.,

Y(X;A,B) =¥(X% B, A). (18)
Proof. Fromthedefinitionsof ¥ andvy we have

»(X;A4,B) = [(XeA)Nn(X‘cB)|eB

[(
(XeB)Nn(XoA)]eB
= U(X%B,A).

Finally, the centerindependencef ¢ follows from (18) andthe centerindependencef W.

3 Generalized Closing

Theduality relationbetweererosionanddilation, aswell asbetweeropeningandclosing,stateshat

(X0A)=XA (19)
X®A = (X°0A) (20)

whereX®A = (X @ A) & A is theordinaryclosingof X by A. Next we introducea generalized
closingbasedon the duality principle. Thatis, we definethe generlizedforegroundclosingof X by
(A, B), denotedby ®(X; A, B) or simply by ®(X) if (A, B) areunderstoodasfollows:

®(X;A,B) = [¥(X A, B)* (21)
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PROPERTY 7 . Thegenearlizedforegroundclosingis a “dual HMO” followedby an erosion;i.e,

®(X;A,B)=[(X®A) U (X @ B)|o A (22)
dual HMO

Proof. Fromthedefinitionsof ® and¥ we have

®(X;A,B) =
]GBA]C

)
S

( )C]@A
B)le

a

The“dual HMO” is the unionof two dilations: of X by the hit SE(A), andof X¢ by themissSE
(B). It consistsof all pointsin animage X whereeitherthetranslatechit SE A intersectsatleastone
ON pixel or thetranslatedniss SE B intersectsat leastone OFF pixel. Thus,the “dual HMO” is the
setof pixelswherethereis atleasta partialmatchto the SE,andthe generalizedoregroundclosingis
a“dual HMO” followedby erosionby the hit SE. The generalizedoregroundclosing,definedin (22),
canalsobe visualizedasthe setcomplemenbf a generalizedoregroundopeningon the background.
In this view, it is the setcomplemenbf the union of hits for all matchego the setcomplementmage
(wherethe SEmustalsobe spatiallyinverted).Figure5ashowvs the actionof ® ontheimagein Figure
2, usingthe SEin Figurelaasbefore.Thelinesof OFFpixelsin FigureSaareproducedy firstfinding
thosepointsin theimagewherethe line of hits intersect®OFF pixelsandthe singlemissintersectsan
ON pixel (this occurson the top edgesof thelinesandon the top pixels of thetext), andtheneroding
theresultby theline of hits. Notethattheresultinglinesof connectedFF pixelsarecontinuousn the
text section.

As for the generalizedpenings we definethe generlized badkgroundclosingof X by (A, B),
denotedby ¢(X; A, B) or simply by ¢(X) if (A, B) areimplied, asfollows:

¢(X; A, B) = (X A, B)J° (23)

By working in a similar way asfor the foregroundclosingit canbe shavn thatthe generalizedack-
groundclosingis a“dual HMO” followedby anerosionby the missSE;i.e,

$(X;A,B)=[(X®©A)U(X@B)oB (24)
dual HMO

Figure5b shavs the actionof the generalizedackgroundtlosingon theimagein Figure2, using
the SE in Figure 1a. The backgroundn Figure 2 is containedwithin this set. We next give several
propertiesof the generalizedoregroundandbackgroundlosing.
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PROPERTY 8 . Thegenearlizedforegroundclosingis extensivej.e.,
O(X;A,B)DXOADX . (25)

Proof. Since(X @ A) U (X¢ @ B) DX @ A, andsinceerosionis a monotonencreasingoperator
(e, XCY = X6 ACY 6 A), wehave

B(X)D(XBA) O A= XOADX.

O
PROPERTY 9 . Thegenealizedforegroundclosingis idempotentj.e.,
P[O(X)] = (X)) . (26)
Proof. Thisfollowsfrom (21) andtheidempotencef the generalizedoregroundopening
®[O(X; A4, B)] = [U((X;4,B)]54,B)F
(XA, B A, B
[W(X% A, B)f
= ®(X;A4,B)
O
PROPERTY 10 . Thegenearlizedbadkgroundclosingof X containsXe; i.e.,
#(X;A, B)DX‘®@BDX*°. (27)
Proof. Since(X & A) U (X @ B) DX @& B, andsinceerosionis increasingwe have
#(X)D(X‘®@B)o B=X‘®@BDX".
O

PROPERTY 11 . Thegenerlizedforegroundclosingby (A, B) is a fixedpoint of theclosingby 4, i.e.,
®(X; A, B)®A=d(X; A, B) (28)

andthegenerlizedbadgroundclosingby (A, B) is a fixedpoint of theclosingby B, i.e.,
&(X;A,B)®B = ¢(X;A,B) . (29)

Proof. It followsdirectly from Lemmal. O



PROPERTY 12 . Thegenerlizedbadgroundclosingof X by (A, B) is equalto the generlizedfore-
groundclosingof X¢ by (B, A); i.e.,

d(X;A,B)=9(X%B,A). (30)

Proof. Thisfollows from the definitions(21) and(23). O

So far we have seenthat the two generalizetpenings¥ and yield two setswhoseunionis a
subsetof the original information;i.e., ¥(X)C X and(X)C X°¢. By contrastthetwo generalized
closings® and¢ yield two setswhoseunionis largerthantheoriginalinformation;i.e., ®(X) 2 X and
¢(X) DX

We next shaw the ability of the generalizedpeningsandclosingsto extracttextural patterns Con-
siderthe hit-missSE, givenin Figure6, which hasa short-rangeperiodictexture. Figure7 shavs the
applicationof the HMO andthe generalizedpeningsandclosings,usingthis SE, to animage. The
strengthof the HMO signal(b) shouldbe contrastedvith thatof the generalizedoregroundopening
in (c), which shavs all theforegroundpixelsin (a) thatparticipaten the HMO match.Thegeneralized
backgroundopeningin (d) shavs backgroundpixelsin (a) that participatein the HMO match. The
OFF pixelsin the generalizedoregroundclosing(e) arebackgroundixelsin (a) thatarenot selected
by thedualHMO followedby anerosionof thel hit partof the SE.In this example the numberof such
pixelsis large andcomparabldo that of the foregroundpixelsin (c). Finally, the OFF pixelsin the
generalizedackgrounctlosing(f) areforegroundpixelsin (a) thatarenot selectedoy the dualHMO
followed by an erosionof the misspartof the SE. ¢ Fromthis example,it is apparenthattheseoper
atorscanextract signalscorrespondingo textural patternswithin imagesthat are of greaterstrength
thanmaybe expectedrom visualobsenation.

4 HMO with Rank Order Filters

TheHMO of X by (A, B) detectdhesetof pixel locationsatwhich A occursin X andB occursin X°©.
Thusthe HMO is a binary matchedfilter that actssimultaneouslyboth on the imageforegroundand
its background.Becausat attemptsto performan exactmatching,it is sensitve to noise,occlusions
of imageparts,or uncertaintiesaboutthe exact shapeof the hit or miss SE. To make it morerobust
one could performa union of HMOs, eachwith slightly differentSEs. This is the shaperecognition
approactollowedin [2]; however, it couldbecomputationallyeryintensedueto the potentiallylarge
numberof SEs.

Blur Matching: A moreefficient methodfor improving therobustnes®f the matchis to computea
blur match.In distinctionwith the exactmatchof anHMO, we definea blur--matchHMO (BHMO) to
requirethat(i) thereis an ON pixel within aradiusr; of eachhit, and(ii) thereis an OFF pixel within
aradiusr, of eachmiss.For SEsthatdescribeshape$o be matchedn theimage,the blur matchgives
immunity to pixel noisethatoccursneartheshapeboundariesFortunatelythis blur matchis computed
efficiently by first dilatingtheimageby adisk SE R, of radiusr; anddilatingthesetcomplemenimage
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by adisk SE R, of radiusr,y, beforecomputingtheintersectiorof erosionsan (3) for the HMO:
BHMO(X;A,B;Ri,Ry) =[(X ® R1) 0 AN [(X°@ Ry) © B| (31)
A generlizedforegroundblur openingis thengeneratedby following the BHMO by adilation by A:
Uy (X5 A, B; R, Ro) = [(X @ R)©A) N (XD R)©B)| @ A. (32)

Obviously, the generalizedoregroundblur openingby (A, B) is afixedpoint of theopeningby A.

A moreflexible approachor constructinga robust generalizedpeningis to replacethe erosions
in theHMO with moregeneralilters. Therearetwo suchgeneralizationsyhich, althoughdifferentin
their definition andimplementationaretheoreticallyequivalent. Thesearethe thresholdconvolution
andthe rank order filtering approach.In the remainderof this section,we will assumeahatwe deal
only with discretesignals.

ThresholdCorvolution: Let usrepresenthe imageset X with its 2-D binary indicator signal z.
Similarly, let w bethethebinarysignalrepresenting finite SEW, which is alsoviewed asawindow
of pixels. Considerthe following thresholdedcornvolution of the input signalz with w, evaluatedat
pixel locationn,

Ulz x w(n) — 6] (33)

wheref is avariablethreshold If § = |W|, then(33)is equivalentto theerosionof X by W. However,
if § < |W|, thenthethresholdcorvolutionimposedooserconditionsthanerosionon detectingi?’ in
X, andhenceit could potentially be morerobust by adjustingd. Theseideashave beenappliedto
severaltemplatematchingapproachefor binaryobjectdetectionasdescribedn [4, 15, 13].

RankOrder Filtering: Givenadiscrete-agumentsignal f anda finite subsetiV of its domain,the
r-th rankordertransformatiorof f by W yieldsthesignal

fO0,W(n) =r —thlargestof f(n+ k), ke W (34)

wherer = 1,2, ..., |W|. Applying rank orderfilters to the binary signalz representing setX yields
abinarysignaltoo? In [8] a set-theoretidefinition of binary rank orderfilters wasgiventhat avoids
sortingandusesonly pixel counting;thusthe r-th rank ordertransformatiorof X by W is

XOW={z:|XN(W+2)|>r} (35)

Notethatif » = |W|, thenX O, W becomesheerosionX W, for r = 1 we getadilation. Obviously,
the thresholdcornvolution (33) andthe binary rank orderfiltering (35) yield identicalbinary signalsif
0=r.

In [7] it was shavn that the convolution of a binary signal f with a binary ‘template’ signal w
(representinga finite SE W) comparedto a threshold,or its equivalentrank order operatoy is the

2Binary rank orderfilters wereusedin [3]. Rankorderfilters for non-binarysignalswereusedin [6, 12]. For relation-
shipsbetweerrankorderandmorphologicabperatorsee[8].
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optimum (using a Bayesianformulation) decisionfor detectingw in f, when f containsa shifted
versionof w corruptedwith binarysalt-and-peppearoise.We analyzethis casehereto motivatetheuse
of rankorderfiltering in HMOs. We approactihe problemof imageobjectdetectionn the presencef
noisefrom theviewpoint of statisticalhypothesigestingandrankorderfiltering. Assumethatthe (part
of the) obseredbinaryimagef, in aW neihborhoodarounda pixel locationk atwhich a decisionis
to betaken,hasbeengeneratedinderoneof thefollowing two probabilistichypotheses:

Hy: f(n)=e(n), neW+k.
H, : f(n)=|wn—*k)—e(n)|, neW +k.

HypothesisH,; (H,) standgor “objectpresent’(“object not present”)at pixel locationk. The“object”
w IS adeterministidinarytemplate e is a stationarybinarynoiserandontield whichis a2-D sequence
of independenidentically distributed(i.i.d.) randomvariablestakingvaluel with probabilityp < 0.5
and 0 with probability 1 — p. W + k is the templatewindow shifted at location k. The absolute-
differencesuperpositiorbetweenw ande under H; forces f to always have valuesO,1. Intuitively,
sucha signal/noisesuperpositiormeansthat the noisee togglesthe valueof w from 1 to 0 andfrom
0 to 1 with probability p at eachpixel. This noisemodelcanbe viewed eitherasthe commonbinary
symmetricchannelnoisein signaltransmissioror asa binaryversionof the salt-and-peppamnoise.To
decidewhethertheobjectw occursatk we useaBayesdecisiornrule thatminimizesthetotal probability
of errorandhencdeadsto thelik elihoodratio test

H,
Pr(f/Hi) > Pr(Hy)
Pr(f/Hy) < Pr(H,)

Hy

=) (36)

wherePr(f/H;) arethelikelihoodsof H; with respecto theobseredimagef, and Pr(H;) arethea
priori probabilities.Dueto thei.i.d. assumptioraboute,

/ Ho H pf(n 1 f(n) (37)

neW+k

Under H; andsincef, w, e arebinary, e(n) = |f(n) — w(n — k)| forn € W + k andhence

r(f/H) = [ pMewmRl - )il ek (38)
neW+k

Substitutingtheseinto (36) andtakinglogarithmsof bothsidesyields

H,
zkﬂn)—\f(n)—w(n—k)l Z Ao = ﬁ
H,
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Expandingthe absolutedifferenceandcancellingcommontermsgives

H,
> k) 2 o=t (39)
neW+k HO

Thus,the selectedstatisticalcriterionandnoisemodelleadto computethe binary correlationbetween
anoisyimageandaknown imageobjectandcomparet to athresholdfor decidingwhetherthe object
is presentSincethis optimumdecisionrule involvesonly athresholdedonvolution, it is equivalentto
arankorderfilter.

In [14] a compositionof rank orderfilter and a dilation was proposedor featuredetectionas a
robust replacemenof the ordinary opening. This r-th rank-dilation operatorof a (binary or non-
binary)signal f by abinarytemplate(set)IW consistof ther-th rankordertransformatiorof f by W
followedby adilation by W. Thustherankorderoperatoreplaceghe erosionin anordinaryopening
and(by varyingr) senesin detectingl¥ morerobustly thanthe erosionwhereaghe dilation redravs
W at the detectedocations. The sameoperatorwas called rank openingin [7] and shapeinference
openingin [18]. In [14] the rank-dilationoperatorwasfurther superimposedvith the original image
usingpointwiseminimum,which makesit anti-extensive andidempoten#.

Motivatedby theabove ideaswhererankorderoperatorganimprove the performancef matched
filters whenthey replaceerosionsn casesof noiseor shapedistortion,we will userankorderfiltersin
the HMO of the generalizedpening.Thus,for a givendisjoint SE pair (A, B), we definethe (p, ¢)-th
rankhit-misstransformatiorof X by (A, B) asthe setoperator

X ®pq (A, B) = (X0O,4) N (X0, B) (40)

wherep = 1,2, ...,|A| andq = 1,2, ..., | B|. Then,the(p, ¢)-th generlizedforegroundrankopeningof
X by (A4, B) isthesetoperator

Uy e(X;4, B) = [(XO,4) N (XT,B)| @ A (41)

Thus ¥, , consistsof a rank HMO followed by dilation with the hit SE. Of course,the generalized
foregroundrank openingby (A, B) is a fixed point of the openingby A. Similarly, we candefinethe
rankorderversionsof the othergeneralizedpeningsandclosings.

PROPERTY 13 . Thegenerlized foreground rank openingby (A, B) is not in genelal idempotent,
exceptin thecasewhee p = |A| andg = | B|, wheee it reducedo the previouslydefinedgenerlized
foregroundopening¥.

3In generalnotethatif I'(-) is ary increasingsetoperatorthentheoperatorX — X NI'(X) isincreasinganti-extensie,
andidempotent.
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Proof. Consideranimagewith m ON pixelsin ahorizontalline, anda SE A with n < m horizontal
hits. If p < n, therank orderoperatorwill causethe imageto shrinkto m — p + 1 pixels, andthe
subsequendilation expandsit to m + n — p pixels,which is larger thanm pixels. Eachsubsequent
applicationof thegeneralizedank orderopeningwill alsoincreasgéheimageby n — p pixels. a

Finally, notethatall theideaspresentedh this sectionronrankHMOs andgeneralizedankopenings
of a (binaryimage)set X canbe extendedeasilyto gray-level imagesf by replacingall rank order
settransformationswith rank order filters acting on gray-level images;replacingn with pointwise
minimum;andreplacingX ¢ with m — f wherem is the maximumgrayamplitude.
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