Google Books: Making the public domain universally accesbie

Adam Langley and Dan S. Bloomberg
{agl,dbloomberg@google.com

Copyright 2006 Society of Photo-Optical Instrumentatiogbeers.

This was published iDocument Recognition and Retrieval XISPIEVol. 6500 paper 6500-16, San Jose, CA, Jan. 30 -
Feb. 1, 2007.

ABSTRACT

Google Book Search is working with libraries and publishemsund the world to digitally scan books. Some of those
works are now in the public domain and, in keeping with Gosgtaission to make all the world’s information useful and
universally accessible, we wish to allow users to downldedrn all.

For users, it is important that the files are as small as plesaiid of printable quality. This means that a single codec
for both text and images is impractical. We use PDF as a awartéor a mixture of JBIG2 and JPEG2000 images which
are composed into a final set of pages.

We discuss both the implementation of an open source JBIG@dem, which we use to compress text data, and the
design of the infrastructure needed to meet the technieggl land user requirements of serving many scanned works.
We also cover the lessons learnt about dealing with diftdP&+ readers and how to write files that work on most of the
readers, most of the time.

Keywords: Google, books, PDF, public domain, JBIG2, leptonica, Had$dcorrelation, mixed raster, open source

1. INTRODUCTION

Google Book Search launched in late 2004 as part of Googlissiom to organize the world’s information and make it
universally accessible and useful. Book Search consigis@programs: the publisher program and the library project
The first allows publishers to submit their books so thatsisan find them when searching. The second involves agree-
ments with several major libraries, including Oxford’s Beidn and the University of Michigan, to scan and includerthe
collections in our index. Itis this latter project which vdts in our acquisition of works for which the copyright hapeed
worldwide, and hence we may freely share the results.

These books are available, in full, for viewing onlinehatt p: / / books. googl e. com but this interface presents
several challenges. First, the images are only 575 pixale wnd so the resolution is minimal for all but the very snsdlle
books. Second, a user has to be online to read the book dtingtthose who might want to read on other devices such as
e-book readers. And lastly, it's not practical to print ttemhk out from the web interface.

Because of this we wanted to offer a format where users ceald the book offline, in programs other than a browser,
and which offered sufficient resolution for high qualityriing.

1.1. PDFs - a widely supported mixed-raster container

We have little interest in writing client-side applicat®for the viewing of our contents. The breadth of differeatforms
in use means that such an undertaking would need to run in digesse environments and, even if the project were open
source, the effort required to support it is not practical.

Two widely used and standard formats for mixed-raster danisare PDFand DJVU? A decision of which to use
depends on factors involving both the encoding and decaalingesses. On the encoding side, we will see that the best
tradeoff between coding rate and image quality is to hav@yloesmpression for both foreground and background, and both
PDF and DJVU support high quality lossy compression for iesaand text. However, DJVU encoding uses non-standard
compression methods, for both the continuous tone backdréwavelet) and the binary foreground mask, whereas PDF
uses encoding methods that have gone through standardsitteesnfior both (JPEG2000 and JBIG2, respectively). For
decoding, the user’s ability to view the pages depends oavh#ability of client programs to rasterize the page inrage
Both standalone and browser plug-in clients exist for DJ\d DF, but the installed base for PDF clients, notably
Adobe’s free Acrobat Reader, is far larger. Additionalllities for printing PDF are more universal and efficient.

It is also important that the resulting files are as small assiipde. The raw inputs to the compression process are
several gigabytes in size and, even given the increasingtraion of broadband, few of our users would be willing
to download and store such huge files. Thus we want to use gtecbmpression formats so that the user experience
is as good as possible. These formats are, inevitably, mastycn terms of computation for both the encoding and
decoding. However, we have the computing resources to mertioee encoding and are willing to invest them because
of the importance of minimising file size. The computationaived in decoding was an unforeseen issue which will be
covered later in the paper.

We were then presented with two decisions: which compradsionats to use for images and which for text. Our
major sources of images are book covers, drawings in thesdan#f misclassified text. Because these books are out of
copyright, they are old and have very few full-colour photosst images in the books are black and white. The covers of
books are often colour, but they carry little important mf@tion and it's not useful to have high quality represeatest
of them. Misclassified text is a reality of dealing with thede& books. It's rare, but we should be careful that the résyilt
text is still readable, even if of a much lower quality thamreotly identified text.

We selected a number of representative samples of thesetyipes of images and took the JPEG format as our baseline
(with the 1JG encoder). This was compared with the wavelseda]PEG2000 using the Kakadu encodéve reduced
the JPEG quality level so that the image data was as smallssibpe, while still being of acceptable quality. Then we
tuned the size of the JPEG2000 images until we felt they warghly the same quality. This is a difficult comparison to
make because the different formats degrade in differenswadnen stressed. In JPEG the edges of the DCT blocks become
noticeable and mosquito noise appears where high frequemaponents cause ringing. In JPEG2000, texture disappears
and areas smudge out. In this highly subjective test, JPBG&&ulted in smaller images and this is what we chose to use.

JPEG2000 does not have a defined quality metric like that BGJRo we use a slope-distortion metric that is specific
to the Kakadu encoder. In our tests, this appears to work angllit matches closely with our subjective impression of
image quality.

In choosing a text compression format, our goal is to offeéd-@0i, 1-bit images at the lowest possible bitrate. This
is a very respectable resolution and is easily readable mes@and when printed. Each page is about 4MB in size,
uncompressed. For an example, see Figure 1.

In PDF, there are three possible candidates for the compregmat: G4, FLATE and JBIG2. G4 is simple: it
involves a fixed Huffman table which is used to encode thedfitthe image as a raster. It is lossless, quick and each
page is encoded independently. FLATE is also losslessgusimiverisal coder (zlib) along with 2D context estimation
However, for text the compression is not as good as G4.

We used the book Flatlafdo test the efficacy of these different formats. FLATE conspieg this 161 page book
results in a 19.4MB PDF file (120KB/page), G4 produces 8.58BKB/page) but JBIG2achieves 4.2MB (26KB/page).

JBIG2 is significantly more complex. It can optionally usefirhan compression, but in practice arithmetic encoding
is used. It can encode the images in a raster way, like G4plggttthe best compression it can find symbols on the page,
encode them and then encode the placement informatiom Hlsa work on each page independently, but to get the best
compression rates multiple pages must be compressed at once

A brief survey of commercial encoders turned up none thatapsd suitable. The encoder had to be able to run within
our custom, Linux based environment. Further, past expegisuggests that binary-only libraries cause future probl
when ABIs change. Thus we embarked on writing our own JBIGDédaP for this project using a component classifier
from the leptonica open source library. In the next sectierdescribe the features of this classifer that make it Seifaib
use in a JBIG2 encoder, followed by a description of the JBéB&oder itself.

2. JBIG2 COMPRESSION

A JBIG2 bit stream can be thought of as a domain specific laggyfiar drawing pages and, as such, it has three basic
modes of operation which we will be considering:

e Generic region encodingn adaptive arithmetic encoding of 1 bpp (bit per pixel) gas

e Symbol encodingrhe ability to build dictionaries of 1 bpp images and plduen on the page. The dictionaries can
be shared across pages and a page may use several dicBonarie

*With a context size of 20 pages

Flatland. 41

with great exactness the configuration of the object
observed.

An instance will do more than a volume of gen-
eralities to make my meaning clear.

Suppose I see two individuals approaching whose
rank I wish to
ascertain. They
are, we will sup-
pose, a Merchant
and a Physician,
or in other words,
an Equilateral Tri-
angle and a Pen-
tagon : how am I to distinguish them?

It will be obvious, to every child in Spaceland

who has touched the threshold of Geometrical Stud-
ies, that, if I can bring my eye so that its glance

Figure 1. An example of a 600-dpi page: page 44 of the Flatland PDF

Figure 2. A JBIG2 arithmetic encoded generic region heatmap: theadldhe pixel the more bits were spent encoding it. As expected
edges cost the most to code; horizontal and vertical edgeshaaper.

¢ RefinementThe ability to take a 1 bpp image and correct it by alterinnef its pixels. The mask of pixels is
arithmetically encoded and the unrefined image serves dextdan the encoder.

There exist Huffman versions of all of these, and also a moderfcoding halftone regions. We do not support eitherin
our encoder, nor do we consider them here. Huffman compressinferior and halftone regions are classified as images
and JPEG2000 encoded.

The most obvious way to compress pages is to losslessly ertbedh as a single 1 bpp image (see Figure 2). How-
ever, we get much better compression by using symbol engadid accepting some loss of image data. Although our
compression is lossy it is not clear how much informationcisially being lost - the letter forms on a page are obviously
supposed to be uniform in shape, the variation comes frontipg errors and lack of resolution in image capture.

Given that we have chosen to perform symbol encoding, thedsrds as simple as possible. Connected components
are gathered from a set of some number of pages, those wipelaapn more than one page are placed in a global symbol
dictionary, and the rest are placed in a per-page dictioridrg page information itself consists of placement infaiora
for the symbols. Refinement is not used since it is costly toeob too many pixels and it makes little difference visyall

2.1. Unsupervised classification of binary components

The leptonica implementation of the JBIG2 classffigerforms a greedy unsupervised classification of ‘tokema’1 bpp
image. The ‘tokens’ can be connected components (CC) oeggtgs of them. The method is to make a decision, for every
new token, whether it belongs to an existing class or shaurih fa template for a new class. The challenge is to provide
an implementation that works efficiently for millions of ks, but also has sufficient flexibility to allow controllitige
accuracy of the match within a class. As such, our implentiemt&as a number of useful and important features, each of
which is considered in more detail:

e On the input side, it will classify as tokens either CC, cletges, or words in the roman alphabet.

e The image comparison function can be either a windowed ranlsHorff or a windowed correlation. The correlation
method has a correction factor depending on the weightktieiss) of the characters.

e For each new instance, it does the matching over a small sabsgisting templates that expands sub-linearly with
the number of templates.

e To get the best template location for each instance, a firra¢lation-based correction is performed after the cen-
troids are aligned.

2.1.1. Selection of binary tokens for classification

Connected components are found efficiently using Hecldbarti-based flood fiflto successively remove each one, com-
puting the bounding box at the same time. Characters typiejuire aggregation of components including dots, aed ar
extracted from a mask generated by a morphological cloditigeoinput image with a vertical structuring eleme8gj.
Words are trickier, because the spacing between words ecgisigaificantly, and they are extracted at a resolution afteib
150 ppi (pixels/inch). The interword spacing is analyzedistically by carrying out a sequence of horizontal didas
with a Sel of width 2, each dilation followed by a computatairthe number of CC. With successive dilations, the number
of CC falls as the characters within a word have been joinéds i€ then followed by a plateau in the CC count, where the
words remain separated, and finally, with further dilatiaghe words begin to join and the number of CC resumes its fall.

We next consider two methods, Hausdorff and correlationcamparing two image "tokens” to make a decision
whether they are sufficiently similar to be assigned to theesalass. In all cases, one of the tokens is a template for an
existing class, and the other is an instance of a componéet tested.

2.1.2. Hausdorff image comparator

The Hausdorff distancél is a true metric (that obeys the triangle inequality) for gaming two 1 bpp imagés. It is
defined as the maximum of two directed Hausdorff distanceshere the directed Hausdorff distance between images
andB is the maximum over all pixels id of the distance from that pixel to the closest pixeBn Formally, if we define
the distance from a pointin A to the nearest point in the sBtto bed(p, B), then the directed Hausdorff distance from
AtoBis

and the Hausdorff metric is
H(A, B) = max(h(4, B), h(B, A))

The Hausdorff distance is typically sensitive to pixeld du@ some distance away from the the nearest boundary pixel.
Because one or both images can have salt or pepper noisg flaarom a boundary pixel, a rank Hausdorff compar&zb,
with a rank fraction slightly less than 1.0 can be used to ga@e immunity to such noise. However, rather than actually
computing the Hausdorff distance between the two tokenghwils expensive, a decision is simply made whether the
distance is less than some threshold value. Additiondleycomparison is made for a single relative alignment wheze t
two tokens have coincident centroids. With these simptifices, the template and instance can be dilated in advaren T
the Hausdorff test checks that the dilated image of one awnédl (or a rank fraction) the pixels of the undilated imade
the other, and the tests are run in both directions. A sufidessitch causes assignment of the instance to the template’
class.

The strength of the Hausdorff match is that it uses pixeldrfan any boundary, where variability in pixel value is
expected to be low. For an odd dimension Sel, sa@ 3with the origin of the Sel at the Sel center, dilation is syatric,
and the Hausdorff distance threshold is an integer (1 ¥3,2 for 5x 5, etc.). However, for small text, character confusion
can occur even using a Hausdorff distance threshold of lth€wmore, for very small components, such as punctuation,
using a X3 Sel in the presence of halftone dots often results in useegfular halftone dot components as templates for
punctuation. Therefore, it is necessary to usex@ 3el, which is asymmetric about its origin, to get accegtabsults. It
is then necessary to choose a rank fraction of about 0.970t4589 or greater gives far too many classes, and use of 0.95
or smaller results in character confusion.

2.1.3. Correlation image comparator

Because very tiny Hausdorff distance thresholds are redtircorrectly classify small text components, the pixelsrithe
boundary are important. Consequently, correlation coatpes are preferred to rank Hausdorff, because the fornmbea
more finely tuned. When using a correlation comparator, émroids are again aligned when doing the comparison. Let
image tokeng and2 be the instance and template, respectively. Denote the ewofforeground pixels in imagdsand?2

by |1| and|2|, and the number in the intersection of the two imaged @=2|. Then the correlation is defined to be the ratio:
(|1 @ 2])2/(|1] x |2|). This score is compared with an input threshold. Howeverabse two different thick characters can
differ in a relatively small number of pixels, the thresh@dnodified depending on the fractional foreground occupanc
of the template, given bR = |2|/ (w2 X hg), wherewy andh, are the template dimensions. The modified threskailsl
related to the input threshoildand a weighting parametg¢r(0.0 < f < 1.0)by: ¢/ =t + (1.0 —¢) x R x f. Values oft =

0.8 andf = 0.6 form a reasonable compromise between accuracy andernahtlasses for characters with 300 ppi scans.

2.1.4. Hashing for efficient encoding

The classifier is typically used on text characters, and gtrbe designed to avoid putting different characters in #mees
class. Because there is relatively little penalty for oggreenting (i.e., having multiple classes for the same tyquuigc
character), a large document consisting of hundreds ofpege have thousands of templates. The classifier must effi-
ciently match each input component (instance) againsettpanding set of templates. The number of resulting teraplat

is reduced by removing the halftone image regions beforgsifiang the remaining components. Even more important,
the time to classify an instance should grow significanthyar than the number of templates. We only need to consider
templates that are roughly the same size as the instanceebran not afford a linear search through the set of templates
To find the possible templates efficiently, hash the sizeonwof a large set of buckets (we use the prime number 5507) by
taking (width x height) mod 5507. Then set up an arrdn(raHash) of arrays of template ids for each bucket. Because
the instance dimensions can differ from its template by upgixels, for each instance, list the 25 buckets given bydtwi

+ 0,1,2)x (height+ 0,1,2)) mod 5507 and match the templates in these bucketssag#e instance, starting at the center
and spiralling out. For each template in this ordered listf iheck the actual dimensions, because we hash on thegbrodu
Then measure the similarity (correlation or rank Hausdaorf greedy fashion: (1) when the number of non-conforming
pixels exceeds the allowed rank value, go to the next temp(@) accept the first template where the match completes
within the allowed rank value.

2.1.5. Final correlation to reduce baseline jitter

After an instance is matched to a template, it is necessdfipdahe best location. Surprisingly, although the matching
score is computed with centroids aligned, in a significaattion of instances, the best alignment (correlation-ydgféers

by one pixel from centroid alignment. This correction is ongant for appearance of text, where the eye is sensitive to
baseline wobble due to a one-pixel vertical error. We findrthme correlation scores between template and instance,
allowing the template location to move up to one pixel in bedhizontal and vertical directions from centroid alignrnen
The position chosen is that with a minimum in the number oéfsxn the XOR between the two images.

3. BUILDING THE PDF
3.1. Linearisation

Linearised PDFs (see appendix F of the PDF specifictiare a special organisation of PDFs designed for increrhenta
loading over the web. They appear well formed to readersdbalt understand the linearisation. However, for readers
that do understand it, which is currently limited to Adoblerswser plugin, there are several structures that allowitsie
page to be displayed immediately and further pages to béagisg without downloading the whole.

The objects needed for the first page appear at the beginhihg dile, along with a hint table that gives the offsets,
lengths and other information for the rest of the pages. Aigpdictionary is also included at the beginning of the filatt
marks the file as being linearised. Upon seeing this, a capabter can close the HTTP connection to stop the download
and then issue requests for specific byte ranges on a hewa@meTo reduce latency, the Adobe plugin also preloads
some number of pages in advance.

This would appear to be ideal for us, reducing both the badtivwand the user’s latency. However, werdi linearise
our files due to several factors. The first is the unfortunatelior of the plugin. Figure 3 shows the byte ranges reqdest
by the plugin following the opening of a linearised versidroone of our PDF files. The vertical axis is the logarithm of
the byte offset and the horizontal axis indexes the rangeastg. The taller the bar, the larger the range requestethibu
is complicated by logarithmig axis which causes requests closer to the beginning of theofdgpear larger. Requests
which ended up exceptionally short in this graph where edpdiio a minimum size.

From the graph one can see that the plugin starts by loadimg fne cross-reference section at the end of the PDF
and then loads the hint tables and objects of the first pagésdtpreloads several following pages, generating mang mor
requests.

These range requests are batched into HTTP requests inggob@aout four. Some ranges are contiguous (and yet
not merged) and some ranges even overlap. Even when rargesrarclose together (separated by as little as one byte),
separate ranges are requested. If we were to serve thesstggihey would be load balanced across many different
servers and each must perform a significant amount of pringeissorder to serve a tiny reply. This amount of overhead
is unacceptably wasteful.

Second, generating the linearised PDFs adds a lot of comtplés the above data shows, we did implement this, but it
is very difficult using only the Adobe plugin as an oracle ofrestness; the PDF specification contains 11 implememtatio

Log file offset
|
|
|

Request number

Figure 3. A graphical representation of the requests made by the Atflogin when opening a linearised PDF file

notes documenting ways in which their own appendix is irecitr Also, we must consider the cost of maintaining this
code. Complexity in code costs forever more.

The existing web interface already provides a way for usengead a small section of the book, and the ability to
download PDFs is designed for those who are downloading Hwdenbook to print it or read offline. Because linearisation
offers little advantage in this mode of use, and considegisighe issues outlined above, we chose not to linearise these
files.

3.2. JBIG2 context size

With an image format that can extract cross-page informattds beneficial to present as many pages as possible to the
compressor. Figure 4 shows the file size of the resulting PB&nwvdifferent numbers of pages are presented to the JBIG2
compressor at once. In this example the book is Flatfamblich has 161 pages. This shows clearly the improvement with

increasing context size. A large context size will slow dawa compression, but we have the computational resources to
compress entire books at once, and because the smallezéfevgould benefit our users we would choose to do so.

Unfortunately, both our canonical PDF viewerp@f and Acrobat Reader) slow down considerably as the context
size increases. To measure this we instrumerfedf to time the rendering process. We hepldf render the first 20
pages of Flatland with varying context sizes. Figure 5 shibsesults. The user experience (in terms of time to render a
page) degrades markedly as context size increases; theengeewith Acrobat is similar.

Becauspdf is open source we can tell why this happexpdf fails to cache the large, shared symbol dictionary
and renders it once for every page. We can't look at the AdiBbader source, but it seems very likely that the issue is the
same. We could have fixedhbdf , but not Acrobat and so to decision was made to use a congxbéil6 in production.
Hopefully, at some point in the future the readers will be encaipable. Then, larger context sizes should actually speed
up the rendering time, at the cost of extra initial procegsind memory use, and we will be able to shrink all the files.

T T T T T T T T
5e+06 File size —+— |

4e+06

3e+06

Bytes

2e+06

1e+06

0 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

Context size (in pages)

Figure 4. The file size (in bytes) of Flatland with different compresscontext sizes.

4. SERVING INFRASTRUCTURE

Once the PDFs are generated, they must be served to the wdaldje. This is complicated by the fact that the exact
number of pages and the contents of at least the first two sétpages is not fixed until we have the HTTP request for the
file.

At the beginning of every PDF file are one or more pages of leggdl and these need to be internationalised to the
language of the user. Because these files can be copied Inetwees once they are out in the wild, we include the legal
text first in the language of the user (as determined by tigriage of the web interface that they are using) and then in the
language of the book, the hope being that anyone who read®tiecan, at least, read the second of these.

If the two languages are the same, we only include one copyedegal text, thus the number of pages in the PDF can
change with each request. This means that we cannot simpérate PDFs and serve them with a web server, nor can we
generate the PDFs from raw data on the fly due to the amountagbetation involved. Thus, generating the PDFs is a two
stage process. First the raw data for each book is procesteali intermediate form and a number of byte strings, which
are stored. Second, at serving time those byte strings tteeid on the fly and built into a final PDF file.

The intermediate form contains a number of page structoresfor each non-dynamic page in the book. Each page
contains an optional JBIG2 stream, an optional JBIG2 cdstexam (shared by several pages) and zero or more JPEG2000
streams with position information. Each page structurd¢aios everything except the image bitstreams themselvdshw
are referred by their number. A set of such page structureallisd the outline of the book. The outline contains all the
information needed to determine the byte offset of evergctin the PDF.

The raw book data is stored in GESGoogle File System) at several locations. The processirtheoraw data
to generate the intermediate form involves all the imagepession work and hence is very compute intensive. This
computation is carried out off-line in a process similar tdlapReducé? The raw data for each book is mapped to a set
of image bitstreams and the outline data for the book. Usirgesources at Google, the whole process for all books takes
less than two days to complete.

Page render time (seconds)

0 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

Context size (pages)

Figure 5. The time (in seconds) forpdf to render a page of Flatland with different compressionedrgizes.

The outlines are stored in a BigtaBfeThis is a sparse, distributed, persistent multi-dimeraisarted map, developed
at Google that maps tuples of (row, column, time) to a stringhis case, the row is our book identifier, the columns conta
the elements in the outline, and we ask for the most recent.ent

The byte strings are also stored in a separate Bigtable vthemow is “bookid/streamnumber” and there is a single
data column. Again, we ask for the most recent entry. Becailide way Bigtable works, this groups the byte strings for
a given book together as much as possible, which improvdsitihates of the caches.

Bigtable only provides for transactions at the row levelvemeed a way to prevent the regeneration of the intermediate
form from partially overwriting live data which is being sed to the world. So, before we start writing, we find the gestt
index of any byte string in the Bigtable. When new byte siage added they are numbered starting from this index, so
that they don’t overwrite any live data. Finally, the newlm4 is inserted (atomically), which makes the new data. live
After a day we can be sure that any downloads that were re#itéingld data have ended, so the old data can be removed.

We can now describe the serving process. When a request DFaRives, we fetch the outline from the Bigtable.
Based on this, the language of the book and the language afsétre we compute the length of the PDF and the lo-
cations where all the byte strings need to be inserted. This/sus to return HTTP reply headers that include the
Cont ent - Lengt h header. From here the non-image regions of the PDF are dedenademand and we start pipelin-
ing fetches for byte strings from the Bigtable, interle@avinem as required.

5. ACKNOWLEDGMENTS

We have given a technical description of a scalable systeinsame of the components we built for serving, quickly

and efficiently, a very large number of scanned books oveimteenet. However, the description is incomplete without
highlighting a very unusual aspect of the context in whiahwork was done; namely, through a publicly held corporation
(Google). As mentioned in the beginning, the Book Searchnam fits clearly into Google’s mission to make information

accessable and useful. In pursuit of this goal, Google ismmiaing the accessibity of books that are in the public domai

both through online search and serving, and for offline mggdind printing. And there is no charge to the user for the
services. We are very grateful to a large number of peoplsdpporting this vision and implementing these policies; in
particular, Product Managers Adam Smith and Adam MathesEmgineering Directors Dan Clancy and Chris Uhlik.

Additionally, Google internally makes tremendous use oeé@fource software, and supports Open Source develop-
ment in a number of ways. We wish to thank Chris DiBona for ttgvieg a number of Google Open Source initiatives,
and for being a proactive advocate of open sourcing Google.co

NG AL

10.

11.

12.

13.

REFERENCES

PDF ReferenceAdobe System Incorporated, fifth ed.

“Djvu.” htt p: / / www. dj vuzone. or g.

“Kakadu.”’ht t p: / / www. kakadusof t war e. com

E. A. Abbott,Flatland, A Romance of Many Dimentigisttle, Brown, and Company, 1899.

A. Langley, j bi g2enc.” http: //ww. i nperi al viol et. org/jbig2. htn .

D. S. Bloomberg,Leptonica’ ht t p: / / www. | ept oni ca. org/j bi g2. htm .

A. S. Glassner, edGraphics GemsAcademic Press, 1990. 275-277,721-722.

D. Huttenlocher, D. Klanderman, and W. Rucklidge, “Conpgiimages using the Hausdorff distand&EE Trans-
actions on Pattern Analysis and Machine Intelligei&epp. 850—863, September 1993.

D. S. Bloomberg and L. Vincent, “Blur hit-miss transformdaits use in document image pattern detecti@R1E
Conf. 2422, Doc. Rec. |lpp. 278-292, Feburary 1995.

D. S. Bloomberg and L. Vincent, “Pattern matching ushngltlur hit-miss transformJournal Elect. Imagin®(2),

pp. 140-150, April 2000.

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The googlesfiigtem,” in19th ACM Symposium on Operating Systems
Principles pp. 29-43, 2003.

J. Dean and S. Ghemawat, “Mapreduce: Simplified datepsing on large clusters,” @SDI'04: Sixth Symposium
on Operating System Design and Implementatign 137-150, 2004.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, and et altdiligg A distributed storage system for structured data,”
in OSDI'06: Seventh Symposium on Operating System Desigmauidrentationpp. 725726, 2006.

