
Chapter 46 in Livre Hermes Morphologie Mathmatique

Document Image Applications

Dan S. Bloomberg and Luc Vincent

Google

1 Introduction

The analysis of document images is a difficult and ill-definedtask. Unlike the graphics operation of
rendering a document into a pixmap, using a structured page-level description such as pdf, the analysis
problem starts with the pixmap and attempts to generate a structured description. This description is
hierarchical, and typically consists of two interleaved trees, one giving the physicallayoutof the elements
and the other affixingsemantictags. Tag assignment is ambiguous unless the rules determining structure
and rendering are tightly constrained and known in advance.

Although the graphical rendering process invariably losesstructural information, much useful informa-
tion can be extracted from the pixmaps. Some of that information, such as skew, warp and text orientation
detection, is related to the digitization process and is useful for improving the rendering on a screen or
paper. The layout hierarchy can be used to reflow the text for small displays or magnified printing. Other
information is useful for organizing the information in an index, or for compressing the image data. This
chapter is concerned with robust and efficient methods for extracting such useful data.

What representation(s) should be used for image analysis? Empirically, a very large set of document
image analysis (DIA) problems can be accurately and efficiently addressed with image morphology and
related image processing methods.When the image is used as the fundamental representation, and anal-
ysis (decisions) are based on nonlinear image operations, many benefits accrue: (1) analysis is very fast,
especially if carried out at relevant image scales; (2) analysis retains the image geometry, so that process-
ing errors are obvious, the accuracy of results is visually evident, and the operations are easily improved;
(3) alignment between different renderings and resolutions is maintained; (4) pixel labelling is made in
parallel by neighbors; (5) sequential (e.g., filling) operations are used where pixels can have arbitrarily
long-range effects; (6) pixel groupings are easily determined; (7) segmentation output is naturally repre-
sented using masks; (8) implementation is simplified because only a relatively small number of imaging
operations must be implemented efficiently; (9) applications can use both shape and texture, at multiple
resolutions, to label pixels; and (10) the statistical properties of pixels and sets of pixels can be used to
make robust estimation.

Table 1 depictsdocument image analysis(DIA) as occupying a high to intermediate position in terms
of constraints, which depend on the accuracy of the statistical models representing the collection of im-
ages. Bayesian statistical models are the most constrained. Analysis is performed by generation from the
models, usingmaximum a posteriori(MAP) inference. These techniques have been used for OCR [7]and
for locating textlines [6], and can be implemented efficiently using heuristics despite the fact that they
require matching all templates at all possible locations [9].

1

Examples Constraint Approach
letterforms high Bayesian MAP
page layout moderate morphology with params
natural scenes low ad hoc

Table 1: Effect of constraints on the approach to image analysis

Many DIA problems are not framed in a strict Bayesian format.Although the models are not well-
specified, there exist regularities that allow identification of layout parameters (such as average spacing
between words and text lines) and, eventually, the layout hierarchy itself. This involves use of both shape
and texture, for which morphological operations are ideally suited. At the other extreme, arbitrary natural
scenes have very few constraints and continue to defy general attempts at analysis.

The most important low-level operations for DIA fall into five classes:

• Morphological.Operations on binary images are by far the most common.

• Rasterop. Ubiquitous bit-level operations, these are used for implementing binary morphology,
binary logic (e.g., painting and masking) over arbitrary rectangles.

• Rank reduction.Nonlinear operations where the subsampleddestination(dest) pixels are determined
using a rank threshold on a tile ofsource(src) pixels, both for binary and grayscale images.

• Binary reconstruction.Operations that fill into a mask image from a seed image. Theseare crucial
for accurate segmentation.

• Connected components.This differs from the first four operations in that it reads and writes single
pixels rather than full words, and can generate non-image data, such as bounding boxes.

These operations can all be implemented efficiently. The first three are parallel: each dest pixel depends
only on src pixels. The last two should be done sequentially:the order of operations matters because each
dest pixel can depend on previously computed dest pixels. Sequential operations allow a src pixel to affect
a dest pixel an arbitrary distance away, whereas parallel operations have a limited extension of influence.

Programs that generate the output shown in the following applications are indicated in the captions
(!!!! actually, not yet: it would be nice to give the links here in the book !!!!). Source code for many
of the algorithms described here, including all the examples, can be obtained at(!!!!! Fix this !!!!!!)
livre-hermes-web-page/some-tar.gz.

2 Applications

We have space to demonstrate a small number of document imageapplications that benefit by using a
morphological approach.

2

2.1 Word extraction from a music score

The extraction of words from a music score is very simple. From a 1 bit/pixel (bpp) image, a large
horizontal morphological erosion generates “seeds” in thestaff lines. Then a binary reconstruction (seed
fill), using the original image as a mask, recovers the lines and everything touching them. Lyrics and other
musical notations are then extracted by XORing with the original.

2.2 Page segmentation

Segmentation is the fundamental operation in DIA. There aremany variations and approaches, depending
on the goals of the analysis. The goals can be partially specified by the pixel accuracy desired and the cost
of various errors. Examples of such goals are:

• Is there an image (or textblock) on the page?

• If there are images (or textblocks), where are they?

• Are there other graphics elements on the page?

• Locate the hierarchical (tree) structure of the text: blocks, paragraphs, sentences, words, characters.

• Assign logical labels to page elements

For a real application, the cost of errors must be considered. For example, if the primary goal is
good visual appearance, and the non-image part is quantizedinto a small number of levels, the cost of
identifying image pixels as non-image can be much higher than making the opposite mistake. By contrast,
if the goal were to identify all the text as a preprocessing step for OCR, it is much worse to lose text
regions than to label some image pixels as non-image.

Page elements can be labeled with binary masks. Each pixel ina binary mask represents a yes/no
decision about whether that pixel has a particular label. Pixels can be represented as fg in multiple masks,
such as a pixel that is labeled as fg in both a textline mask anda textblock mask. For example, a halftone
mask, with fg pixels over pixels in halftone regions, can be used to remove those image pixels before doing
text analysis, or to direct an operation to render the image and non-image pixels differently. The latter is
often desirable because text is best rendered with high contrast, whereas images are usually rendered with
dithering on printers or with many levels on displays to avoid posterization. In the following, we show
how to start with an image and progressively filter differentregions, using the implicit shape and texture
properties.

Let us first show the use of rank reduction to answer the question: Is there an image on the page?
Figure 1 shows the sequence of images. Although a sequence ofreductions is taking place, the results are
all displayed at the same resolution. Starting with a 300pixel/inch(ppi) image containing8x106 pixels (a),
do a cascade of four 2x rank reductions. Parts (b) and (c) showthe results at 4x and 16x reduction, using
levels 1 and 4 followed by 4 and 3, rsp. A final5x5 erosion yields the result (d), and a test for fg pixels
gives the answer. This is a computationally inexpensive procedure, taking only 1 msec on a standard 3
GHz processor! This result can be used as a seed in a binary reconstruction to generate the halftone mask,
as we now show.

There are several different morphological ways to identifytext and halftones. Some involve binary
reconstruction to form the masks at some point in the calculation. The images are assumed to be reasonably

3

Figure 1: Generation of halftone seed to identify the existence of images.

well deskewed. Here is an almost trivial approach: do a horizontal closing followed by a smaller horizontal
opening. This can leave pixels within text lines as solid fg rectangles, separated vertically by bg pixels,
and pixels within halftone regions as solid fg. This is the essence of an early morphological approach
called RLSA [4]. A vertical opening can then remove the text lines, leaving the halftone mask.

Figure 2: Generation of halftone mask.

We now show a somewhat more accurate method for page segmentation. All operations except the
halftone seed construction are performed at a resolution of150 ppi. Start by finding the binary masks that
label image pixels. In the following, we show the operationson two different images that have text, image
and rules in nontrivial layouts. Figure 2 shows steps in projecting out the halftone parts of the page (a).
The seed (b), composed of pixels that are nearly certain to bewithin the halftone region(s), is generated
by a sequence of 2x rank reductions (levels 4, 4 and 3), followed by a5x5 opening and 8x replicated
expansion back to 150 ppi. This was shown in Figure 1. The clipping mask (c) is designed to connect
pixels in each halftone region (so that even a single seed pixel will fill it entirely), but not to form a bridge
to any pixels in non-halftone regions. It is generated from (a) using a 2x reduction (level 1) followed by
a 4x4 closing. The halftone mask (d) is then generated by binary reconstruction from the seed into the
mask.

The next step is to find the text lines. These can be consolidated through a horizontal closing, but such
an operation will join lines in different columns, so a vertical whitespace mask must be generated that can

4

Figure 3: Generation of whitespace mask.

later restore the white gutters. This is shown in Figure 3. Starting from the input image (a), subtract the
halftone mask and invert the result (b). Opening with a largevertical Sel can leave components that will
break text lines with a large amount of white space above or below, but this can be prevented by opening
first with a Sel that is wider than the column separations and higher than the maximum distance between
text lines (c). After these pixels are removed, open with a5x1 horizontal Sel to remove thin vertical lines,
followed by opening with a1x200 vertical Sel to extract long vertical lines (d).

Figure 4: Generation of textline mask.

Figure 4 shows the text line extraction process, with the whitespace mask computed in (b). Starting
again with the image (a), solidify the text lines using a30x1 closing (c). Text in adjacent columns that
has been joined is then split by subtracting the vertical whitespace mask, and a small3x3 noise-removal
opening yields the textline mask (d).

Figure 5 shows the steps taken to consolidate the text blocks. The original page is shown in (a). Begin
with the textline mask, and join pixels vertically using a1x8 closing (b). Then, for each cc separately, do a
30x30 closing to form a solid mask. By closing separately, we can use a large Sel without danger of joining
separate regions. Follow this with a small3x3 dilation, to insure coverage of the mask components. At this
stage, some textblock components need to be joined horizontally, and this is done with small horizontal
closing (c). Because this closing can join textblocks separated by very narrow gutters (which did not
happen in the two examples shown), the vertical gutter mask is again applied to split blocks that may have

5

Figure 5: Generation of textblock mask.

been joined, and small components are removed to obtain the textblock mask (d). This can be further
filtered for size and shape.

In these examples of page segmentation, a number of parameters were specifieda priori for the filter
sizes, rather than being computed using measurements on each page. The question naturally arises whether
such an open-loop approach is robust. Perhaps surprisingly, the answer is in the affirmative, if by robust
we mean that errors where large numbers of pixels are misclassified occur very rarely. The robustness is
tested in two ways: (1) by using the algorithm on a large number of pages and (2) by demonstrating the
the results are relatively invariant when the parameters are changed by about 30 percent in each direction.
The latter is easily measured by scaling the image up and downby this fraction. In this way, it is seen
that when computing textblocks on a scaled up image, some of the textlines are not joined, so the vertical
closing parameter should be larger. The advantage of this highly-empirical approach is that failures are
easy to find and to analyze, and proposed improvements are quickly tested.

2.3 Skew detection

Image deskew greatly simplifies page analysis and improves both the performance of symbol-based com-
pression (jbig2) and the displayed appearance of the page. Most approaches to the computation of a global
skew for 1 bpp images are based on Hough transforms or pixel projection profiles. Other attempts have
used fourier transforms, connected components, and special pre-filterings such as a rosette of morpholog-
ical pixel correlation filters [10]. For a short descriptionof some of these methods, see [2].

Most of these approaches have difficulty generating an accurate signal from the lines of text in sit-
uations where there are multiple, unaligned columns, or thescan includes part of a second page. The
simplest and arguably the most effective way to avoid these problems was described by Postl[11] in 1988.
Postl maximized the variance of thedifference of pixels on adjacent scanlines. Let the sum of pixels in the
ith scanline bepi(θ), whereθ is the angle through which the image is rotated (or vertically sheared). Then
Postl’s signal is

S(θ) =
∑

i

(pi(θ) − pi−1(θ))
2 (1)

where the sum extends over all scanlines in the image. The image is then deskewed by rotating through
the angleθ for which S(θ) is maximized. This is effective because, when the page is aligned, most of

6

the signal comes from a relatively small fraction of scanlines; namely, those at the base and x-height of
the text lines. Halftone pixels contribute little to such a differential signal. Text lines in each of multiple
columns will contribute relatively independently to the signal if they are not aligned. And the peak will be
very sharp, corresponding to an angular half-width in radians of approximately 1/(textline width in pixels).
At 300 ppi, with a textline width of 1500 pixels, the half-width of the peak inS(θ) is about 0.04 degrees.
This is more than sufficient for visual appearance, because it is unusual to notice image skew that is less
than 0.2 degrees. Results have been given on a data set of about 1000 images [1], and these have been
compared with a morphologically-based filtering approach [10].

2.4 Text orientation detection

Thehit-miss transform(HMT) can be used to determine the orientation of Roman text,because there is a
preponderence of ascenders over descenders (approximately 3:1 for English). Consider the four hit-miss
Sels:

Figure 6: hit-miss Sels for extracting character ascenders and descenders.

where the Sel origin is indicated by a small black circle. Thesignal in this case is the difference between
the number of ascenders, identified from the HMT using the first two Sels, and the number of descenders,
using the last two Sels. The statistical significance of thisdifference is determined as follows. The ex-
pected variance in each of these numbers is proportional to their square root. The probability that the two
populations can be distinguished (i.e., that the distributions do not overlap) is estimated from the square
root of the sum of the individual variances:

σo =
√

Nup + Ndown/2 (2)

Then thenormalized orientation signalis defined as the difference between the number of ascender and
descenders, expressed as a multiple ofσo:

S̄orient ≡ | Nup − Ndown | /σo = 2 | Nup − Ndown | /
√

Nup + Ndown (3)

Usually there will be different prior probabilities for thetext orientation, so different thresholds are
in general set on the normalized signal for a decision to be made. The signal can also be measured in
landscape orientation, and the two signals compared, usingappropriate priors, to determine the orientation
as one of a set of four directions.

Before doing the HMT, the textline structure should be simplified to fill the holes within the x-height
region, leaving only the ascenders and descenders. This canbe done with a horizontal closing to solidify
the text line, followed by a larger opening to remove all ascenders and descenders that have possibly been

7

joined by the closing. The ascenders and descenders can thenbe simply reconstructed by ORing with the
original image. These pre-HMT operations can usually be done at a lower resolution of between 100 and
150 ppi, using a dilating rank reduction to preserve pixels.

After the HMT we have pixels in small clumps associated with each ascender and descender. To get
the ascender and descender count, we can find the number of 8-cc, but an even more efficient and robust
way is to do a cascade of 2x rank (level = 1) reductions that consolidates each small cluster into a tiny cc,
followed by counting the number of components at this reduced resolution.

2.5 Pattern matching

The ability to do fast pattern matching between elements of document images, such as cc or character or
word images, is an important underpinning of many importantapplications. Some examples are:

• Most OCR systems use image matching with a large library of templates.

• Lossy jbig2 compression of binary images requires unsupervised classification of components into
a relatively small number of similarity classes, the templates of which are used to represent each
instance of its class when rendering the page.

• The generation of similarity classes can be used to improve the quality of a rendered image, by
generating grayscale templates from a set of binary instances. These grayscale templates can be
used directly to substitute for the binary instances, or they can be converted to higher resolution
binary templates, a process called “super-resolution.”

• Hit-miss Sels can be generated automatically from a patternon an image, and then used to find all
other occurences of this pattern.

• Applications such as document image summarization [3] estimate important words, phrases and
sentences by the occurrence of repeated word shapes.

Pattern matching requires some way to measure similarity between elements. Two popular similarity
measures for binary images are the Hausdorff distance and correlation. Once a measure is chosen, along
with a threshold for declaring two patterns sufficiently similar to belong to the same class and a policy
(typically “greedy” or “best match”) for terminating the search for a matching template, unsupervised
matching can proceed [8],[13]. In practice, for small text that is scanned at 300 ppi, character confusion
can occur with a Hausdorff distance threshold as small as 1. Consequently, correlation is preferred, as
described below.

For the classifier application, we have a set of templates forexisting classes and a set of instances yet
to be assigned to a class (or, if not assigned, to become the template for a new class). Greedy matching
works well: each instance must be matched against the templates until a sufficiently close match is found.

2.5.1 Correlation image comparator

Correlation is computed from the fg pixels, with centroids aligned. LetA andB be the binary images to
be compared, and denote the number of fg pixels in an imageX by |X| and the number in the intersection
of the two images by|A ∩ B|. A is one of the templates andB is an instance to be classified. Then the
correlation is defined to be the ratio

8

C(A, B) = (|A ∩ B|)2/(|A| × |B|) (4)

The correlation is compared with an input threshold. However, because two different thick characters
can differ in a relatively small number of pixels, the threshold itself must depend on the fractional fg
occupancy of imageB. Let the bounding box ofB bewB × hB. Then the fg occupancy ofB is R =
|B|/(wB × hB). The modified thresholdT ′ then depends on two input parameters, an input thresholdT
and a weighting parameterF (0.0 ≤ F < 1.0):

T ′ = T + (1.0 − T) × R × F (5)

For 300 ppi images, it is found experimentally that values ofT = 0.8 andF = 0.6 form a reasonable
compromise between classification accuracy and number of classes.

2.5.2 Component alignment for substitution

A jbig2 encoder must specify, for each instance in the image,the class membership (an index) and the
precise location that the template for that class is to be placed by the decoder. Although the correlation
matching score is found with centroids aligned, in a significant fraction of instances, the best alignment
(correlation-wise) differs by one pixel from centroid alignment. This correction is important for appear-
ance of text, because the eye is sensitive to baseline wobbledue to a one-pixel vertical error. It is thus
necessary to measure the XOR of the two images at the locationwhere the centroids line up, and at the
eight adjacent locations. The best location has the minimumnumber of pixels in the XOR.

2.5.3 Hit-miss comparator

The HMT is a general filter for matching an arbitrary binary pattern to a binary image. There are no
constraints on the content of the pattern fg. However, the characteristics of the hit-miss filter must match
the expected variation in the pattern, because the HMT doesn’t have a rank parameter: every hit and miss
must match. For document images, variation can take the formof boundary noise, salt and pepper noise,
rotation, scaling, and other image distortions. As a general rule, it is best to put hits and misses far enough
from the boundaries to completely avoid boundary noise. Oneshould avoid using more hits or misses than
necessary, because it increases both computation time and the likelihood that an instance is missed. If too
few hits or misses are used, false matches will be hallucinated. To reduce sensitivity to small skew and
scale changes, the aspect ratio of the pattern should ideally be close to 1.

Of several methods for automatically generating a hit-missSel from a pattern, we describe and illus-
trate the “Boundary” method. Select a fraction of fg and bg pixels that are at specified distances from the
boundary. First the fg and bg contours at the specified distances are generated. Then the hits are chosen by
subsampling along a traversal of the fg contour, and likewise for the misses. These four parameters allow
flexible specification of the hit-miss Sel (pixGenerateSelBoundary()).

Figure 7 illustrates a hit-miss Sel generated by the boundary method. The pattern (on top) is reduced
8x and the hits and misses are placed at a distance of 1 from theboundary, with hits subsampled every 6th
pixel in the fg and misses every 12th in the bg. The HMT is very fast; on a 25M pixel image, reduced 8x
to 400K pixels, it takes about 12 msec.

Using just the “T” in the pattern makes the HMT more robust to skew and to variations in scale.
Figure 8 shows the pattern and the Sel generated at 4x reduction. The HMT on the 4x reduced image
(1.6M pixels) takes 0.2 sec.

9

Figure 7: Pattern and hit-miss Sel generated from it at 8x reduction.

Figure 8: Pattern and hit-miss Sel generated from it at 4x reduction.

10

2.6 Background estimation for grayscale images

We finish with an application showing the use of grayscale morphology. Suppose a document image
is captured in grayscale, but with a significant variation inthe background illumination across the page.
Suppose you wish to render the image in grayscale, but reconstructed as it would appear if the illumination
were uniform.

Figure 9: Use of grayscale tophat to compensate for uneven illumination.

The morphological tophat is a robust tool. The bg variationscan be largely removed by first closing
the input image (to remove the fg) and then subtracting the input image from the result. Figure 9 shows
the processing sequence, starting with an 8 bpp grayscale page image at a resolution of 150 ppi, in (a),
and performing a tophat with a15x15 Sel, which is photometrically inverted (b). The closing in the tophat
is performed relatively efficiently using the van-Herk/Gil-Werman (vHGW) algorithm[5, 12], separably,
which does the closing in a time independent of the size of theSel.

The result (b) has a washed-out appearance because the inputimage (a) has a very dark bg. The
appearance can be improved by using a lineartone reproduction curve(TRC) to increase the dynamic
range, giving (c). In this case, we mapped pixels in (b) with values below 200 to 0 and pixels with values
above 245 to 255. The value 245 is chosen for the white point toeliminate most of the bleedthrough
from the other side of the page. Nevertheless, some deficiencies remain, as the background is not entirely
cleaned and the text on the left side of the page is somewhite lighter than the rest.

Why not simply binarize with an adaptive threshold on (a)? There are two reasons. First, by mapping
to a grayscale image, we give ourselves the option to change the gamma and the dynamic range of the
image before thresholding. Second, we preserve the option of retaining the mapped grayscale image,
which displays better on a screen that supports anti-aliasing.

11

References

[1] D. S. Bloomberg and G. E. Kopec and L. Dasari, “Measuring document image skew and orientation,”
SPIE Conf. 2422, Doc. Rec. II, pp. 302–316, 1995.

[2] D. S. Bloomberg, “Analysis of document skew,”http://www.leptonica.org/papers/docskew.pdf.

[3] F. R. Chen and D. S. Bloomberg, “Summarization of imaged documents without OCR,”CVIU, Vol
70, No 3, pp. 307-320, 1998.

[4] K. Wong, R. Casey and F. Wahl, “Document analysis system,” IBM J. Res. Develop, 26(2), pp. 647–
656, 1982.

[5] J. Gil and M. Werman, “Computing 2-D min, median and max filters,” IEEE Trans PAMI15(5), pp.
504-507, May 1993.

[6] A. Kam and G. Kopec, “Document image decoding by heuristic search,”IEEE Trans. PAMI18, pp.
945–950, Sept. 1996.

[7] G. Kopec and P. Chou, “Document image decoding using Markov source models,”IEEE Trans. PAMI
16, pp. 602–617, June 1994.

[8] A. G. Langley and D. S. Bloomberg, “Google Books: Making the public domain universally acces-
sible,” SPIE Conf. 6500, Document Recognition and Retrieval XIV, paper 6500-16, 2007.

[9] T. P. Minka, D. S. Bloomberg and A. Popat, “Document imagedecoding using iterated complete path
search,”SPIE Conf. 4307, Document Recognition and Retrieval VIII, pp. 250–258, 2001.

[10] L. Najman, “Using mathematical morphology for document skew estimation,”SPIE Conf. 5296,
Document Recognition and Retrieval XI, pp. 182–191, 2004.

[11] W. Postl, “Method for automatic correction of character skew in the acquisition of a text original in
the form of digital scan results,”U.S. Pat.4,723,297, Feb. 2, 1988.

[12] M. van Herk, “A fast algorithm for local minimum and maximum filters on rectangular and octagonal
kernels,”Patt. Recog. Letters, 13, pp. 517-521, 1992.

[13] www.leptonica.org

12

