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Abstract

We describe methods for performing color quantization dhcimlor RGB images, using
an octree data structure. The advantage of the octree i tkasimple to generate both a
good patrtitioning of the color space and a fast inverse dalole to find the color index for
each pixel in the image. With only 256 colors, it is often resaey to error-diffusion dither the
color for appearance, even though this increases the RMbgrivor. We dither using integers
for efficiency without loss of color accuracy.

1 Introduction

The problem of color quantization is to represent full cdRBB images, where each pixel is
typically described by three 8-bit color samples, in an aginate fashion by a relatively small
number of colors. We will assume that each color is represkhy its 24-bit RGB value. His-

torically, the number of colors used has been determinetidyepth of the display frame buffer,
often 8 bits. Thus the full color space, consisting of abdutrillion pixels %), is divided into

a small number of regions, and for each region, a single septative color is used for each pixel
that falls into the region.

There are many algorithms for vector color quantizatiort t@n be found in the literature,
some of which are quite good, and others quite poor. Furtbexpthere is an excellent Open
Source implementation in the jpeg |fif library [6]. Do we nesatbther?

| believe the answer is "yes.” The generic difficulties witlctor quantization derive mostly
from implementation inefficiency, both in the decision gss for breaking up the color space and
the assignment of samples to the correct partition. ThdBeulies have typically been overcome
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by compromising the quality of the result, and the art is ta fnway to minimize the loss of
quality while using a fast quantizer. This report describb@articular approach to this problem.

There are in general two steps in the color quantization ¢f-8iPRGB image. The first is to
partition the color space into a small number of colors, d@decond is to assign one of these
colors to each pixel in the image. The second step requiressarsal through every pixel in the
input image, using amverse color tabléo map from the RGB value to the color table index. The
visual result is usually improved with colerror diffusion dithering EDD). The first step requires
some analysis of the image for best results, although onalsaruse a predetermined partition of
the color space. The various approaches are described.below

1.1 One-pass quantization with fixed partitioning

The simplest color quantization takes a fixed, pre-detegthicolor space partitioning, and per-
forms a single pass over the input image to assign a colokitaleach pixel. The color index is
always assumed to be an index into three 8-bit color tabl&@B)REach color table is typically 8
bits, to allow mapping of full RGB color onto an 8 bit displayme buffer. However, memory has
recently become sulfficiently inexpensive so that most digptoday have either 16 or 24 bits of
depth. Fixed, equal-volume partitioning suffers from gesi contouring and loss of color fidelity
without EDD. However, with EDD, visual color accuracy isseaably good.

1.2 Two-pass quantization methods

There are several existing methods for adapting the paniitg the color space based on the pixels
in a particular image. Of them, we briefly describe khmeans, popularity, median candoctree
methods. The division of the color space can be represeittext by a flat structure that describes
the partitions, or by a tree. A tree can be generated eithstdting with the entire color space
andsplitting it up, or by starting with a large number of small volumes amergingthem. The
division of colors along a color axis can be either flat or &iehical. Thegpopularitymethod uses

a simple selection of colors from the color space,rtteglian cumethod uses a splitting algorithm
with a flat division of the space, and tbetreemethod is hierarchical and is naturally amenable to
an algorithm that merges regions of color space.

The k-meansmethod, and the relatednde-Buxo-Grayalgorithm are iterative methods for
clustering, with typical applications being pattern remitign and data compression. They are
really multi-pass, not two-pass methods. In k-means, yaosé the number of clusters and an
initial set of cluster centers. Then, iteratively do thddaling until convergence or you run out of
patience:



e scan the image, assigning each pixel to its nearest clustéerc

e compute the centroid of each cluster, and use this as thelnsterccenter

The total error is guaranteed not to increase from one itgrdd the next, so the method will
converge to a locally optimal solution. However, this is gofranteed to be globally optimal;
the final centers will depend on the initial centers that d@sen. The LGB algorithm is similar.
Unfortunately, these clustering methods are not pradicaolor quantization because, in addition
to sensitivity to initial conditions, they require manyraéons.

The popularitymethod was described by P. Heckbert [1] and an implementatas given by
D. Clark [2]. The color representatives in thelor tableare selected as the colors that are most
populated in the image. Generate a histogram of the colljpped to (e.g.) 5 bits in each sample
of R, G, and B, and choose some number, typically not more #%) of the most populated
bins. Although very simple, this method has two serious thaks. First, if the image has many
different colors, this will do badly on any colors far frometiselected ones in the color table.
Second, it will in general do poorly when using ditheringcéiese dithering can only interpolate
within the convex hull of the colors selected in the coloid¢ab

The median cutmethod partitions the color space to put roughly equal nusbepixels in
each color cell. It was originally described by P. Heckbéitdnd implementations are given
by A. Kruger [3] and in the open source JFIF jpeg library [6].ediflan cut is implemented by
repeatedly dividing the space in planes perpendicular eoajrihe color axes. The region to be
divided is chosen as the one with the most pixels, and thsidivis made along the largest axis.
The division itself is chosen to put approximately half theets in each part. The method does
well for pixels in a high density region of color space, whegpeated divisions result in small
cell volumes and color errors. However, the volume in a lowsily part of the color space can
be very large, resulting in large color errors. In the opamrse jpeg library implementation, half
the cuts are chosen from the highest population cells, alfidtgachosen from the highest volume
cells. Making some of the cuts based on cell volume has twmitapt effects. First, such cuts
reduce the largest color errors that may occur. Second, tl®admg the representative colors in
the color table more evenly through the color space, theyvdbetter results with dithering. More
recently, | have implemented a modified version of mediantleat, like the JFIF jpeg version,
performs a composite partitioning. In the leptonica versgome of the partitions are based on
population and others are based on the product (populatiesiume). There are some other
tricks, and the result is quite good. A report on the leptamedian-cut method can be found at
http://www.leptonica.org/papers/mediancut.d}.

In general,Octreesare a good way to divide up the color space, while allowing pasel



indexing with an inverse color table. One method has beehghda, by M. Gervautz and W. Pur-
gathofer, a summary of which can be found in A. Glassr@raphics Gems [5]. Unfortunately,
their description is somewhat terse. They built an octretking pixels, one at a time, and either
making a new color or merging the pixel with an existing colafter the prescribed number of
colors in the color table have been established, the new eitkeer makes a new color (causing
merging of two existing colors), or it is merged with an exigtcolor. Each color is represented
by an octcube, or a set of octcubes, so the merging operdfectieely prunes the octree. The
method has the advantage that only the prescribed numbetaréaeeds to be stored at any time.
It has the disadvantage that the merging operations are lmatgal, and it is not easy to under-
stand how to spread the colors through the full color spabté;iwis necessary for dithering. An
implementation of this approach is given by D. Clark [4].

We now proceed to describe various octree-based methodisnmapted in leptonica.

2 Octree color space partitioning

2.1 One-pass baseline version

We provide a one-pass implementatign,xFi xedQct cubeQuant 256( ) , using equal vol-
umes of color space, for a baseline comparison with the @&spnethods. Each of the 256 color
cells that fill the color space is composed of two third-lexatubes. We choose to divide the blue
dimension down to only the second level, because of thavelatsensity of the eye to blue. The
color can be chosen either to be at the center of the octguines the centroid of pixels in each
region. We implemented it both ways and found it made littfeecence without using dithering
and no difference when dithering. Thus, for simplicity, gresent implementation uses the center
of the octcube(s). Without dithering, the result is relayypoor on images with large regions of
similar color. Howeverpecause the color table covers the entire color space, wittedng the
results are surprisingly good on all images

2.2 Simple two-pass population-based method

A fairly simple approach to building an octree is implemehitepi xCct r eeQuant ByPopul ati on().
The colorspace is broken up into “level 4” octcubes, meaitiag each color axis is divided into

16 parts, for a total of 16 x 16 x 16 = 4096 level 4 octcubes. #fitst pass through the image,

the number of pixels in each cube is summed, and the numberbalsowith at least one pixel is
found. For a typical image, with more than 256 such colorg, d8lors are reserved for the most



populated of these level 4 octcubes. This leaves 3904 lewetctibes that are not represented, so
to get a colormap assignment for every possible octcubdagté4 colors are taken to be all 64
level 2 octcubes. The actual color assigned to each of thenb&2 popular colors is the average of
all pixels that land within the level 4 octcube. Likewiseg thctual color assigned to the remaining
64 colormap entries is the average color of the residuallpifke., those pixelsiot in the 192
small octcubes) that fall in each of the level 2 octcubes.g&aion of the colormap, in this way, is
accompanied by generation of an “inverse” lookup table tinagbs from the level 4 octcube index
to the colormap index. After the colormap and inverse lodtalgbe are generated, the second pass
is performed. Each source pixel gets mapped from its RGBevddevel 4 octcube index, and
thence to the colormap index, which is stored in the outpaigen This method is quite fast, gives
reasonably good results for most images, and gives ouisgnesults for orthographically gen-
erated images (such as maps) where most of the pixels arelatavely small number of colors,
but, due to aliasing and compression artifacts, there amadae than 256 colors in total.

2.3 General octree quantization

We give below the details for generating an adaptive coltree¢ where the octcubes at various
levels are selected based on the actual distribution otixehin the color space, as well as the

requested number of colors in the result. (The simpler papri-based octree, described above,
is pre-determined to have octcubes at levels 2 and 4 onlg)cdde incol or quant 1. ¢, which

is fairly heavily commented, supplements the descriptiemreh

2.4 Octree data representation and indexing

The two-pass octree method used here is simpler than theothethGervautz and Purgathofer,
both conceptually and in implementation. The basic datacsire is a set of arrays that describe
the leaves of an octree at each of the levels of interest,dugfirV, where N is the finest level

of subdivision. Our implementation allows a choice of 4, Bdor N. At each level, there are
eight cubes that correspond to a single cube at levell. The cubes are indexed so that the cube
1 at leveln — 1 contains the eight cub&s + j, 7 = 0, ..., 7 at leveln. The cube index is computed
from the RGB values by taking the most significant bits of tive¢ color samples in the order:

r7 g7 b7 r6 g6 b6 r5 g5 b5 r4 g4 b4 r3 g3 b3 ...

down to the level of interest. For example, at level 5, thexcbnsists of the 15 bits shown above.
For any RGB value, it is easy to compute the cube indices alewey of the octree. This is one of
the big advantages of the octree representation. It shautftbted that the octree represented by
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this set of arrays igirtual, in that we have no pointers going between the differentiseVastead,
we have gpyramidof arrays of octcube leaves, one at each level, with fasikindanto each array.

2.5 Pruning the octree

The octree with the selectemblor table entries(CTES) is built in the first pass. The image is
scanned and the pixel counts are placed in the octcube fleav@ chosen leveV, using the
index mapping above. The deepest leietan be either 4, 5 or 6. For example, usiNg= 5,
there are2'® leaves. It is not necessary to use all the pixels in the imsm®je take pixels from a
subsampled version. Using only about seven percent of #edspisubsampling by a linear factor
of 4) gives a sufficient approximation to the pixel statisti&fter the sampled pixels are placed in
their octcubes at levéY, the tree is pruned back. The goal is to label the octcubectiraésponds
to each CTE. For simplicity, a CTE is represented by eithgrla(aingle octcube or (b) a set of
octcubes, all at the same level, that belong to a single betatithe next level up.

The tree is then pruned from levél, taking the octcubes in sets of eight, where the eight
octcubes are those that compose the octcube at the nextufeviebr each set of eight octcubes at
some level, one or two of the following conditions will be alvted:

1. One or more of the octcubes has already been selected d@s.a CT

2. One or more of the octcubes that is not already a CTE hagéruyels to become a CTE.
Make it into a new CTE.

3. None of the cubes is already a CTE or has enough pixels tinieea CTE.

In both the first and second cases, the containing octcube atkt level up automatically becomes
a CTE, which contains those subcubes that are not alreadyea (@The exception is in the special
case where all 8 subcubes are already CTEs; the containtoghecis marked as taken but not
assigned to a separate CTE.) In the third case, nothing is dbthis level. When all cubes are
processed at this level, the procedure is repeated at thdenwekup.

The decision for forming a new CTE is that the number of pixetee cube exceeds a threshold
that is proportional to the number of pixels yet to be assignea color divided by the number of
colors left to be assigned. We actually hold back 64 colonegerve, because when we get to
the second level, we require that each of these 64 octcuba<’did& by default. (We only prune
back to level 2.) In this waye constrain the maximum color error, while insuring thag mtire
color space is covered by the color tabl€he value 1.0 for the proportionality constant at each
level above 2 works well; the constant for level 2 is not useddoise the octcubes become CTEs
automatically.



One problem with this approach is that the actual number loirsan the color table depends
on the distribution of colors in the image. It can happen G¥atreserved colors is not enough.
Suppose we prune back from lew®l = 6. Suppose an octcube at this level has enough pixels
to become a CTE. This will force the containing octcubes\ale5, 4 and 3 all to be CTEs. In
a pathological case, where it is possible to run out of colibm&e things can be done to reduce
the number of colors that are actually used. You can startipgufrom a lower level (5 or 4),
you can specify a smaller total number of colors, or you care@ase the proportionality constants
for the CTE threshold values to reduce the number of CTEseatiéieper levels. In the leptonica
algorithm, you specify the desired number of colors, butalgerithm is permitted to give more,
up to a limit of 256. The initial octcube level and the thrdshmonstants are compiled in.

The color associated with each CTE is the center of the cling@ctcube. This is easier than
maintaining a running centroid value, and has very littlecfon the result. In fact, because the
octcubes at each level are indexed as they would appear ottree from left to right, the center
of the octcube in which any pixel falls can be rapidly computghis center value is also stored in
the CTE, from which it can be rapidly extracted for dithering

2.6 Assignment of color indices to image pixels

The pixels are assigned a CTE index on the second pass. Thisecdone very quickly in two
different ways, of which we have implemented the second:

1. Make an explicit inverse colormapCompute and store the index in the leaf array at the
deepest level, in the place were we stored the pixel courttseiffirst pass. Then for each
pixel, convert the RGB value of the pixel to the truncatectobe index at that level, and
look up the colortable index from this array. No extra sterégrequired because we have
already allocated the octcube array at this level.

2. For each pixel, run down the tree from the root to find the CTEwlge that it belongs to.
This is done by converting the RGV value to an index into thr@yaof octcubes at each
successive level, stopping when you find an octcube thatikedas a CTE and the octcube
at the next level down isota CTE. If you reach the bottom, the octcube will be marked as
a CTE and you take it.

For large images where the number of pixels is much larger tha number of octcubes at the
deepest level, the first method will be faster. When ditlggrthe propagated error allows pixels,
in principle, to have any color within the color space. Tisishe reason that the CTEs must cover
the entire space.



3 Error diffusion dithering

Without dithering, a typical 256 color image will show sexerontouring and color distortion,
regardless of the method of choosing the colors. The cotdaets are particularly evident when
the image has large regions of slowly-varying color. Consedjy, if the goal of color quantizing is
to preserve the appearance of the full color image, ditgasimandatory. Error-diffusion dithering
is the most common and least objectionable type of dithefiingre are four requirements:

e Causality. The error is diffused in raster or anti-raster order, tefsxthat have not yet been
treated.

e Two-dimensional diffusion. The error must be diffused to pixels that are located bothen
current row and in one adjacent row.

e Locality. The error is diffused to nearby pixels, and the closer thxelpithe larger the
fraction of error that is given to it.

e Normalization. The total error is diffused.

Two-dimensional diffusion, locality, and normalizatioreanecessary to guarantee that the av-
erage color in a small region is close to the average coldrerotiginal. These constraints leave
flexibility in the details of the diffusion. The original Rfd-Steinberg (F-S) method diffused the
error to four adjacent pixels, with fractions 7/16, 3/16,&6and 1/16.

We choose to diffuse the error to three pixels, with fracdi8f8 (to right), 3/8 (down) and 1/4
(down and to right), because this requires less computatointhere is no significant penalty in
appearance. Also, unlike F-S, because we do not diffusestteth we do not have a special case
for the leftmost boundary pixels. To increase computatfpeesl, we perform all computation in
integers, and scale the pixel values up and down by a power\We2scale up to reduce roundoff
error to a small fraction of a pixel level increment, and use@r of 2 scaling for fast multiplication
and division.

In more detail, we diffuse in raster order, and, for each cideep line buffers for the current
line and for the next line. The data in the current line buffex copied to the next line buffer, and
the the samples from the current line are multiplied by 64emtdred in the current line buffer. For
each pixel, the error is the difference between the pixelevaind the center of the cube in which
the pixel is placed. We split the error into eighths. The iefnaultiplied by 64) is diffused and the
sample value in each buffer is clipped to 0 &t — 1 to avoid overflow.



4 Discussion of the implementation and results

We consider a typical RGB image witt)® pixels. As mentioned above, the octree color table
can be generated accurately, in the first pass, using ab@@@ixels. The conversion speed for
generating a colormapped image from an RGB image depend®aeepest level at which pixels
are allowed to form CTE octcubes. On a million pixel RGB imagging a 1 GHz Pentium lll,
the total conversion time for levels 4, 5 and 6, which ha\fe2'> and2'® leaves, is 0.40, 0.45 and
0.60 seconds, respectively.

It is difficult to show results with sufficiently good quality compare, for example, the dithered
versions of one-pass and two-pass color quantization. Qus¢ select an image that has many dif-
ferent colors, as well as regions of slow color sweep. Imag#s a variety of flesh colors are
good tests because they are typically hard to representaetuwith a small number of colors.
For display and print in tex, the color images must be coedetd PostScript, and then rendered
by the display engine (e.g., acroread) or the PostScripgirdposer in the printer. The display is
subject to the frame buffer color quantization, along witisgible halftoning (e.g., gv, ghostview),
and the print always loses resolution because a halftoeescs applied to the image. The image
is best displayed in a browser, using one of the two nativgerfarmats (png or jpg), and we do
that here. The figures referenced below can be seen in thequatization section of:

http://www.leptonica.com/applications.html

As noted there, the actual rendering of these images wikémn the browser, the frame buffer
depth (8, 16 or 24 bits), and the video display card.

The results for both one-pass and two-pass quantizatisharen for an image that was chosen
to highlight the difficulties in color quantization. This age has a large variety of flesh tones and
a background with a very slow color sweep, both of which ermsall color errors.

Figure 1 uses the baseline one-pass quantization with ggluahes spanning the color space,
and no dithering. The contouring and color errors are veticeable.

Figure 2 uses dithering on the one-pass quantization witialegplumes spanning the color
space. The results are surprisingly good for such a cruade tadble.

Figure 3 uses the two-pass octree color quantization, witinipg from levelN = 5, but
without dithering. The contouring and color errors are meediuced from those using the one-
pass color table (Figure 1), but the necessity for ditheisrapparent from the evident contouring
and color errors.

Finally, Figure 4 is made using the two-pass octree colontjzation, again with pruning from



level N = 5, and with dithering. The result is comparable to the bestiamedut methods (both

the JFIF jpeg implementation and the modified median cutpiol@ca), and it is about as good
as can be done with 256 colors. This should be compared wgir&5, which shows the original
full color RGB image.
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