
Color quantization using octrees

Dan S. Bloomberg

Leptonica

http://www.leptonica.org/papers/colorquant.pdf

September 4, 2008

Abstract

We describe methods for performing color quantization on full color RGB images, using

an octree data structure. The advantage of the octree is thatit is simple to generate both a

good partitioning of the color space and a fast inverse colortable to find the color index for

each pixel in the image. With only 256 colors, it is often necessary to error-diffusion dither the

color for appearance, even though this increases the RMS pixel error. We dither using integers

for efficiency without loss of color accuracy.

1 Introduction

The problem of color quantization is to represent full colorRGB images, where each pixel is

typically described by three 8-bit color samples, in an approximate fashion by a relatively small

number of colors. We will assume that each color is represented by its 24-bit RGB value. His-

torically, the number of colors used has been determined by the depth of the display frame buffer,

often 8 bits. Thus the full color space, consisting of about 16 million pixels (224), is divided into

a small number of regions, and for each region, a single representative color is used for each pixel

that falls into the region.

There are many algorithms for vector color quantization that can be found in the literature,

some of which are quite good, and others quite poor. Furthermore, there is an excellent Open

Source implementation in the jpeg jfif library [6]. Do we needanother?

I believe the answer is ”yes.” The generic difficulties with vector quantization derive mostly

from implementation inefficiency, both in the decision process for breaking up the color space and

the assignment of samples to the correct partition. These difficulties have typically been overcome

1



by compromising the quality of the result, and the art is to find a way to minimize the loss of

quality while using a fast quantizer. This report describesa particular approach to this problem.

There are in general two steps in the color quantization of a 24-bit RGB image. The first is to

partition the color space into a small number of colors, and the second is to assign one of these

colors to each pixel in the image. The second step requires a traversal through every pixel in the

input image, using aninverse color tableto map from the RGB value to the color table index. The

visual result is usually improved with colorerror diffusion dithering(EDD). The first step requires

some analysis of the image for best results, although one canalso use a predetermined partition of

the color space. The various approaches are described below.

1.1 One-pass quantization with fixed partitioning

The simplest color quantization takes a fixed, pre-determined color space partitioning, and per-

forms a single pass over the input image to assign a color index to each pixel. The color index is

always assumed to be an index into three 8-bit color tables (RGB). Each color table is typically 8

bits, to allow mapping of full RGB color onto an 8 bit display frame buffer. However, memory has

recently become sufficiently inexpensive so that most displays today have either 16 or 24 bits of

depth. Fixed, equal-volume partitioning suffers from serious contouring and loss of color fidelity

without EDD. However, with EDD, visual color accuracy is reasonably good.

1.2 Two-pass quantization methods

There are several existing methods for adapting the partitioning the color space based on the pixels

in a particular image. Of them, we briefly describe thek-means, popularity, median cut,andoctree

methods. The division of the color space can be represented either by a flat structure that describes

the partitions, or by a tree. A tree can be generated either bystarting with the entire color space

andsplitting it up, or by starting with a large number of small volumes andmergingthem. The

division of colors along a color axis can be either flat or hierarchical. Thepopularitymethod uses

a simple selection of colors from the color space, themedian cutmethod uses a splitting algorithm

with a flat division of the space, and theoctreemethod is hierarchical and is naturally amenable to

an algorithm that merges regions of color space.

The k-meansmethod, and the relatedLinde-Buxo-Grayalgorithm are iterative methods for

clustering, with typical applications being pattern recognition and data compression. They are

really multi-pass, not two-pass methods. In k-means, you choose the number of clusters and an

initial set of cluster centers. Then, iteratively do the following until convergence or you run out of

patience:

2



• scan the image, assigning each pixel to its nearest cluster center

• compute the centroid of each cluster, and use this as the new cluster center

The total error is guaranteed not to increase from one iteration to the next, so the method will

converge to a locally optimal solution. However, this is notguaranteed to be globally optimal;

the final centers will depend on the initial centers that are chosen. The LGB algorithm is similar.

Unfortunately, these clustering methods are not practicalfor color quantization because, in addition

to sensitivity to initial conditions, they require many iterations.

Thepopularitymethod was described by P. Heckbert [1] and an implementation was given by

D. Clark [2]. The color representatives in thecolor tableare selected as the colors that are most

populated in the image. Generate a histogram of the colors, clipped to (e.g.) 5 bits in each sample

of R, G, and B, and choose some number, typically not more than256, of the most populated

bins. Although very simple, this method has two serious drawbacks. First, if the image has many

different colors, this will do badly on any colors far from the selected ones in the color table.

Second, it will in general do poorly when using dithering, because dithering can only interpolate

within the convex hull of the colors selected in the color table.

The median cutmethod partitions the color space to put roughly equal numbers of pixels in

each color cell. It was originally described by P. Heckbert [1] and implementations are given

by A. Kruger [3] and in the open source JFIF jpeg library [6]. Median cut is implemented by

repeatedly dividing the space in planes perpendicular to one of the color axes. The region to be

divided is chosen as the one with the most pixels, and the division is made along the largest axis.

The division itself is chosen to put approximately half the pixels in each part. The method does

well for pixels in a high density region of color space, whererepeated divisions result in small

cell volumes and color errors. However, the volume in a low density part of the color space can

be very large, resulting in large color errors. In the open source jpeg library implementation, half

the cuts are chosen from the highest population cells, and half are chosen from the highest volume

cells. Making some of the cuts based on cell volume has two important effects. First, such cuts

reduce the largest color errors that may occur. Second, by spreading the representative colors in

the color table more evenly through the color space, they allow better results with dithering. More

recently, I have implemented a modified version of median cutthat, like the JFIF jpeg version,

performs a composite partitioning. In the leptonica version, some of the partitions are based on

population and others are based on the product (population *volume). There are some other

tricks, and the result is quite good. A report on the leptonica median-cut method can be found at

http://www.leptonica.org/papers/mediancut.pdf[7].

In general,Octreesare a good way to divide up the color space, while allowing fast pixel

3



indexing with an inverse color table. One method has been published, by M. Gervautz and W. Pur-

gathofer, a summary of which can be found in A. Glassner’sGraphics Gems I[5]. Unfortunately,

their description is somewhat terse. They built an octree bytaking pixels, one at a time, and either

making a new color or merging the pixel with an existing color. After the prescribed number of

colors in the color table have been established, the new pixel either makes a new color (causing

merging of two existing colors), or it is merged with an existing color. Each color is represented

by an octcube, or a set of octcubes, so the merging operation effectively prunes the octree. The

method has the advantage that only the prescribed number of colors needs to be stored at any time.

It has the disadvantage that the merging operations are complicated, and it is not easy to under-

stand how to spread the colors through the full color space, which is necessary for dithering. An

implementation of this approach is given by D. Clark [4].

We now proceed to describe various octree-based methods implemented in leptonica.

2 Octree color space partitioning

2.1 One-pass baseline version

We provide a one-pass implementation,pixFixedOctcubeQuant256(), using equal vol-

umes of color space, for a baseline comparison with the two-pass methods. Each of the 256 color

cells that fill the color space is composed of two third-leveloctcubes. We choose to divide the blue

dimension down to only the second level, because of the relative insensity of the eye to blue. The

color can be chosen either to be at the center of the octcube(s) or at the centroid of pixels in each

region. We implemented it both ways and found it made little difference without using dithering

and no difference when dithering. Thus, for simplicity, thepresent implementation uses the center

of the octcube(s). Without dithering, the result is relatively poor on images with large regions of

similar color. However,because the color table covers the entire color space, with dithering the

results are surprisingly good on all images.

2.2 Simple two-pass population-based method

A fairly simple approach to building an octree is implemented inpixOctreeQuantByPopulation().

The colorspace is broken up into “level 4” octcubes, meaningthat each color axis is divided into

16 parts, for a total of 16 x 16 x 16 = 4096 level 4 octcubes. In the first pass through the image,

the number of pixels in each cube is summed, and the number of cubes with at least one pixel is

found. For a typical image, with more than 256 such colors, 192 colors are reserved for the most

4



populated of these level 4 octcubes. This leaves 3904 level 4octcubes that are not represented, so

to get a colormap assignment for every possible octcube, thelast 64 colors are taken to be all 64

level 2 octcubes. The actual color assigned to each of the 192most popular colors is the average of

all pixels that land within the level 4 octcube. Likewise, the actual color assigned to the remaining

64 colormap entries is the average color of the residual pixels (i.e., those pixelsnot in the 192

small octcubes) that fall in each of the level 2 octcubes. Generation of the colormap, in this way, is

accompanied by generation of an “inverse” lookup table thatmaps from the level 4 octcube index

to the colormap index. After the colormap and inverse lookuptable are generated, the second pass

is performed. Each source pixel gets mapped from its RGB value to level 4 octcube index, and

thence to the colormap index, which is stored in the output image. This method is quite fast, gives

reasonably good results for most images, and gives outstanding results for orthographically gen-

erated images (such as maps) where most of the pixels are in a relatively small number of colors,

but, due to aliasing and compression artifacts, there are far more than 256 colors in total.

2.3 General octree quantization

We give below the details for generating an adaptive color octree, where the octcubes at various

levels are selected based on the actual distribution of pixels within the color space, as well as the

requested number of colors in the result. (The simpler population-based octree, described above,

is pre-determined to have octcubes at levels 2 and 4 only.) The code incolorquant1.c, which

is fairly heavily commented, supplements the description here.

2.4 Octree data representation and indexing

The two-pass octree method used here is simpler than the method of Gervautz and Purgathofer,

both conceptually and in implementation. The basic data structure is a set of arrays that describe

the leaves of an octree at each of the levels of interest, 0 throughN , whereN is the finest level

of subdivision. Our implementation allows a choice of 4, 5 or6 for N . At each leveln, there are

eight cubes that correspond to a single cube at leveln − 1. The cubes are indexed so that the cube

i at leveln− 1 contains the eight cubes8i + j, j = 0, ..., 7 at leveln. The cube index is computed

from the RGB values by taking the most significant bits of the three color samples in the order:

r7 g7 b7 r6 g6 b6 r5 g5 b5 r4 g4 b4 r3 g3 b3 ...

down to the level of interest. For example, at level 5, the index consists of the 15 bits shown above.

For any RGB value, it is easy to compute the cube indices at anylevel of the octree. This is one of

the big advantages of the octree representation. It should be noted that the octree represented by

5



this set of arrays isvirtual, in that we have no pointers going between the different levels. Instead,

we have apyramidof arrays of octcube leaves, one at each level, with fast indexing into each array.

2.5 Pruning the octree

The octree with the selectedcolor table entries(CTEs) is built in the first pass. The image is

scanned and the pixel counts are placed in the octcube (leaves) at a chosen levelN , using the

index mapping above. The deepest levelN can be either 4, 5 or 6. For example, usingN = 5,

there are215 leaves. It is not necessary to use all the pixels in the image,so we take pixels from a

subsampled version. Using only about seven percent of the pixels (subsampling by a linear factor

of 4) gives a sufficient approximation to the pixel statistics. After the sampled pixels are placed in

their octcubes at levelN , the tree is pruned back. The goal is to label the octcube thatcorresponds

to each CTE. For simplicity, a CTE is represented by either (a) a single octcube or (b) a set of

octcubes, all at the same level, that belong to a single octcube at the next level up.

The tree is then pruned from levelN , taking the octcubes in sets of eight, where the eight

octcubes are those that compose the octcube at the next levelup. For each set of eight octcubes at

some level, one or two of the following conditions will be obtained:

1. One or more of the octcubes has already been selected as a CTE.

2. One or more of the octcubes that is not already a CTE has enough pixels to become a CTE.

Make it into a new CTE.

3. None of the cubes is already a CTE or has enough pixels to become a CTE.

In both the first and second cases, the containing octcube at the next level up automatically becomes

a CTE, which contains those subcubes that are not already a CTE. (The exception is in the special

case where all 8 subcubes are already CTEs; the containing octcube is marked as taken but not

assigned to a separate CTE.) In the third case, nothing is done at this level. When all cubes are

processed at this level, the procedure is repeated at the next level up.

The decision for forming a new CTE is that the number of pixelsin the cube exceeds a threshold

that is proportional to the number of pixels yet to be assigned to a color divided by the number of

colors left to be assigned. We actually hold back 64 colors inreserve, because when we get to

the second level, we require that each of these 64 octcubes bea CTE by default. (We only prune

back to level 2.) In this waywe constrain the maximum color error, while insuring that the entire

color space is covered by the color table.The value 1.0 for the proportionality constant at each

level above 2 works well; the constant for level 2 is not used because the octcubes become CTEs

automatically.

6



One problem with this approach is that the actual number of colors in the color table depends

on the distribution of colors in the image. It can happen that64 reserved colors is not enough.

Suppose we prune back from levelN = 6. Suppose an octcube at this level has enough pixels

to become a CTE. This will force the containing octcubes at levels 5, 4 and 3 all to be CTEs. In

a pathological case, where it is possible to run out of colors, three things can be done to reduce

the number of colors that are actually used. You can start pruning from a lower level (5 or 4),

you can specify a smaller total number of colors, or you can increase the proportionality constants

for the CTE threshold values to reduce the number of CTEs at the deeper levels. In the leptonica

algorithm, you specify the desired number of colors, but thealgorithm is permitted to give more,

up to a limit of 256. The initial octcube level and the threshold constants are compiled in.

The color associated with each CTE is the center of the controlling octcube. This is easier than

maintaining a running centroid value, and has very little effect on the result. In fact, because the

octcubes at each level are indexed as they would appear in theoctree from left to right, the center

of the octcube in which any pixel falls can be rapidly computed. This center value is also stored in

the CTE, from which it can be rapidly extracted for dithering.

2.6 Assignment of color indices to image pixels

The pixels are assigned a CTE index on the second pass. This can be done very quickly in two

different ways, of which we have implemented the second:

1. Make an explicit inverse colormap.Compute and store the index in the leaf array at the

deepest level, in the place were we stored the pixel counts inthe first pass. Then for each

pixel, convert the RGB value of the pixel to the truncated octcube index at that level, and

look up the colortable index from this array. No extra storage is required because we have

already allocated the octcube array at this level.

2. For each pixel, run down the tree from the root to find the CTE octcube that it belongs to.

This is done by converting the RGV value to an index into the array of octcubes at each

successive level, stopping when you find an octcube that is marked as a CTE and the octcube

at the next level down isnot a CTE. If you reach the bottom, the octcube will be marked as

a CTE and you take it.

For large images where the number of pixels is much larger than the number of octcubes at the

deepest level, the first method will be faster. When dithering, the propagated error allows pixels,

in principle, to have any color within the color space. This is the reason that the CTEs must cover

the entire space.

7



3 Error diffusion dithering

Without dithering, a typical 256 color image will show severe contouring and color distortion,

regardless of the method of choosing the colors. The color artifacts are particularly evident when

the image has large regions of slowly-varying color. Consequently, if the goal of color quantizing is

to preserve the appearance of the full color image, dithering is mandatory. Error-diffusion dithering

is the most common and least objectionable type of dithering. There are four requirements:

• Causality. The error is diffused in raster or anti-raster order, to pixels that have not yet been

treated.

• Two-dimensional diffusion. The error must be diffused to pixels that are located both inthe

current row and in one adjacent row.

• Locality . The error is diffused to nearby pixels, and the closer the pixel, the larger the

fraction of error that is given to it.

• Normalization. The total error is diffused.

Two-dimensional diffusion, locality, and normalization are necessary to guarantee that the av-

erage color in a small region is close to the average color in the original. These constraints leave

flexibility in the details of the diffusion. The original Floyd-Steinberg (F-S) method diffused the

error to four adjacent pixels, with fractions 7/16, 3/16, 5/16 and 1/16.

We choose to diffuse the error to three pixels, with fractions 3/8 (to right), 3/8 (down) and 1/4

(down and to right), because this requires less computationand there is no significant penalty in

appearance. Also, unlike F-S, because we do not diffuse to the left, we do not have a special case

for the leftmost boundary pixels. To increase computation speed, we perform all computation in

integers, and scale the pixel values up and down by a power of 2. We scale up to reduce roundoff

error to a small fraction of a pixel level increment, and use power of 2 scaling for fast multiplication

and division.

In more detail, we diffuse in raster order, and, for each color, keep line buffers for the current

line and for the next line. The data in the current line bufferare copied to the next line buffer, and

the the samples from the current line are multiplied by 64 andentered in the current line buffer. For

each pixel, the error is the difference between the pixel value and the center of the cube in which

the pixel is placed. We split the error into eighths. The error (multiplied by 64) is diffused and the

sample value in each buffer is clipped to 0 and214
− 1 to avoid overflow.

8



4 Discussion of the implementation and results

We consider a typical RGB image with106 pixels. As mentioned above, the octree color table

can be generated accurately, in the first pass, using about 70,000 pixels. The conversion speed for

generating a colormapped image from an RGB image depends on the deepest level at which pixels

are allowed to form CTE octcubes. On a million pixel RGB image, using a 1 GHz Pentium III,

the total conversion time for levels 4, 5 and 6, which have212, 215 and218 leaves, is 0.40, 0.45 and

0.60 seconds, respectively.

It is difficult to show results with sufficiently good qualityto compare, for example, the dithered

versions of one-pass and two-pass color quantization. One must select an image that has many dif-

ferent colors, as well as regions of slow color sweep. Imageswith a variety of flesh colors are

good tests because they are typically hard to represent accurately with a small number of colors.

For display and print in tex, the color images must be converted to PostScript, and then rendered

by the display engine (e.g., acroread) or the PostScript decomposer in the printer. The display is

subject to the frame buffer color quantization, along with possible halftoning (e.g., gv, ghostview),

and the print always loses resolution because a halftone screen is applied to the image. The image

is best displayed in a browser, using one of the two native image formats (png or jpg), and we do

that here. The figures referenced below can be seen in the color quantization section of:

http://www.leptonica.com/applications.html

As noted there, the actual rendering of these images will depend on the browser, the frame buffer

depth (8, 16 or 24 bits), and the video display card.

The results for both one-pass and two-pass quantization areshown for an image that was chosen

to highlight the difficulties in color quantization. This image has a large variety of flesh tones and

a background with a very slow color sweep, both of which expose small color errors.

Figure 1 uses the baseline one-pass quantization with equalvolumes spanning the color space,

and no dithering. The contouring and color errors are very noticeable.

Figure 2 uses dithering on the one-pass quantization with equal volumes spanning the color

space. The results are surprisingly good for such a crude color table.

Figure 3 uses the two-pass octree color quantization, with pruning from levelN = 5, but

without dithering. The contouring and color errors are muchreduced from those using the one-

pass color table (Figure 1), but the necessity for ditheringis apparent from the evident contouring

and color errors.

Finally, Figure 4 is made using the two-pass octree color quantization, again with pruning from

9



level N = 5, and with dithering. The result is comparable to the best median cut methods (both

the JFIF jpeg implementation and the modified median cut in leptonica), and it is about as good

as can be done with 256 colors. This should be compared with Figure 5, which shows the original

full color RGB image.

References

[1] P. Heckbert, “Color image quantization for frame bufferdisplay,”,Computer Graphics, 16(3),

pp. 297-307 (1982).

[2] D. Clark, “The popularity algorithm,”Dr. Dobb’s Journal, pp. 121-127, July 1995.

[3] A. Kruger, “Median-cut color quantization,”Dr. Dobb’s Journal, pp. 46-54 and 91-92, Sept.

1994.

[4] D. Clark, “Color quantization using octrees,”Dr. Dobb’s Journal, pp. 54-57 and 102-104, Jan.

1996.

[5] M. Gervautz and W. Purgathofer, “A simple method for color quantization: octree quantiza-

tion,” in A. Glassner, ed,Graphics Gems I, Acad. Press, 1990, pp. 287-293.

[6] ftp://ftp.uu.net/graphics/jpeg, see jquant2.c in version 6b of JPEG library, 1998.

[7] D. Bloomberg, “Color quantization using modified median cut”,

http://www.leptonica.org/papers/mediancut.pdf, 2008.

10


