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Abstract

The usefulness of the hit-miss transform (HMT) and related transforms for pattern match-
ing in document image applications is examined. Although the HMT is sensitive to the types
of noise found in scanned images, including both boundary and random noise, a simple exten-
sion, the Blur HMT, is relatively robust. The noise immunityof the Blur HMT derives from its
ability to treat both types of noise together, and to remove them by appropriate dilations.

In analogy with the Hausdorff metric for the distance between two sets, metric generaliza-
tions for special cases of the Blur HMT are derived. Whereas Hausdorff uses both directions
of the directed distances between two sets, a metric derivedfrom a special case of the Blur
HMT uses just one direction of the directed distances between foreground and background
components of two sets. For both foreground and background,the template is always the first
of the directed sets. A less restrictive metric generalization, where the disjoint foreground and
background components of the template need not be be set complements, is also derived. For
images with a random component of noise, the Blur HMT is sensitive only to the size of the
noise, whereas Hausdorff matching is sensitive to its location. It is also shown how these metric
functions can be derived from the distance functions of the foreground (FG) and background
(BG) of an image, using dilation by the appropriate templates.

The Blur HMT can be used as a fast heuristic to avoid more expensive integer-based match-
ing techniques, and it is implemented efficiently with boolean image operations. The FG and
BG images are dilated with structuring elements that dependon image noise and pattern vari-
ability, and the results are then eroded with templates derived from patterns to be matched.
Subsampling the patterns on a regular grid can improve speedand maintain match quality, and
examples are given that indicate how to explore the parameter space. Truncated matches give
the same result as full erosions, are much faster, and for some applications can be performed
at a restricted set of locations.

Keywords: pattern matching, scanned image, hit-miss transform, Hausdorff distance, blur
hit-miss, image morphology, OCR
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1 Introduction

Pattern matching techniques are critical for all aspects ofthe analysis of document images. Doc-
uments are typically scanned into a binary image, and many ofthe operations subsequently per-
formed, both for page segmentation and character identification, use the pattern matching tech-
niques (e.g.,erosionand its dual,dilation) of binary image morphology. There are several reasons:
they are implemented by fast boolean operations; they can beused either for extracting or extend-
ing pixel aggregations, both for direct use in later image processing and for subsequent analysis;
they are translationally invariant; they can be used to treat both foreground (FG) and background
(BG) simultaneously; and they can be used without regard to connected component analysis. Fur-
ther, there exist a variety of methods for controlling the noise immunity of these operations.

One of the most important uses of pattern matching is in the analysis of character shapes. For
binary input, the result of image processing can be either binary or gray (integer value) images.
Binary results are much faster to compute, but they contain less information. Even for binary out-
put, the internal operations can be integer or boolean. For integer operations, such as convolution
and thresholded convolution (rank order filters[8]), some level of noise immunity is achieved, but
at the price of doing expensive arithmetic operations on each pixel.

We use the termtemplate to refer to the pattern of FG and BG pixels that are to be
matched in the image. Thehit-miss transform(HMT) is a faster boolean operation that performs
translationally-invariant matching between both the FG and BG of template and image sets. How-
ever, it is prone to error from noise because exact matches are required between image and template
in both the FG and BG. Because of the simplicity and power of the HMT, there have been many
attempts to use it for pattern matching. The usual approach is to choose a subset of the template
pixels, typically sparse. We cite a few examples.

Zhao and Daut[3] gained noise immunity, relative to a HMT, byusing either boundary pixels
of eroded FG and BG templates, or skeletons of these templates, as structuring elements for the
HMT. Wilson[15] automated the design of the structuring elements through a training process that
searched for the smallest subset of pixels that would attainthe desired level of discrimination.
Kraus and Dougherty[5] generated a sparse set of structuring elements by thresholding a single
grayscale instance of each character. Appropriate choice of thresholds is the critical element:
if chosen too conservatively, the subset is too sparse and lacks discriminatory ability; if chosen
too tightly, instances with atypical variation are missed.Gillies[4] took a somewhat different
approach, accumulating statistics from instances of each character, and thresholding the aggregates
to generate non-sparse structuring elements. From these, multi-pixel features were extracted and
used to train a classifier for character discrimination.

One characteristic that these methods have in common is an attempt to compensate forimage
noiseby altering thetemplate, and leaving the image alone. We argue here that although it is
useful to choose a subset of template pixels, it is importantto alter the image before performing
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the HMT. Theblur hit-miss transform(BHMT) has been introduced to do precisely this[1]. Unlike
the HMT, the BHMT performs the match between template and image, for both FG and BG, with
a variable degree of tolerance to alignment of image and template pixels. The “blur” parameter
specifies the maximum distance allowed between a template pixel and the nearest image pixel, in
order to constitute a match for that template pixel. Stated this way, there is an interesting relation
between the BHMT and the Hausdorff metric for the distance between two sets, but the differences
are important for their uses in applications.

To understand the usefulness of the BHMT, it is necessary to consider the origin of noise in
scanned document images. We postulate a simple model, wherevariability between instances in the
image is caused by two different processes. One type isboundary noise,caused by the binarization
process along the edge of an object. Depending on the sub-pixel alignment of scanned objects with
scanner pixels, considerable edge variation occurs. This boundary noise is typically restricted to a
width of two pixels, including both FG and BG boundary pixels. The second type israndom noise,
either generated in printing or due to scanner defects such as dirt on the platten. This is assumed to
occur independently of the pixels in the scanned object, andis most often observed as isolated FG
“pepper” pixels surrounded by BG. It should be noted that both types of noise occur inboundary
pixels, defined to be pixels of either FG or BG that are adjacent to a pixel of the opposite type.
Thus, operations that treat boundary pixels appropriatelywill influence both types of noise.

Even without random noise, boundary noise will defeat an HMTthat uses boundary pixels in
the template. Therefore, when computing matches, it is necessary to give little or no weight to the
boundary pixels. On the other hand, the non-boundary pixels, because of their high correlation be-
tween template and image, are critical for matches. Differences occurring between non-boundary
pixels in image and template, although relatively rare, will defeat both a matching technique like
HMT, that requires an exact match of all pixels, and a metric such as Hausdorff, that is sensitive to
such “outliers”.

The paper is organized as follows. In Sec. 2.1 the BHMT is defined, and the method in which
it provides immunity to both types of noise is described qualitatively. In Sec. 2.2, the Hausdorff
metric is introduced, and the connection between this measure on sets and operations using mor-
phology is made. Also, an illustration is given to show why the Hausdorff metric is not appropriate
for matching templates to noisy images. In Sec. 2.3, two metric functions are constructed, that
are related to special cases of the BHMT. The same example is then used to show how the BHMT
succeeds in matching templates to noisy images. Then in Sec.2.4, the BHMT metric functions are
again derived, this time from dilations by the template of the distance function for the image. In
Sec. 3, several methods for efficiently implementing the BHMT are described, including subsam-
pling the template. Some experimental results are given in Sec. 4 to illustrate the use of the BHMT
in identifying characters, and the major findings of the paper are summarized in Sec. 5.

We end this section with an illustration, in Fig. 1, of the family of rank and blur template
matching operations. The HMT generalizes the erosion to operations that match in both FG and
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Figure 1: Family of rank and blur template matching operations.

BG. The rank operations take thresholds on convolutions, whereas the blur operations remove
boundary pixels appropriately before doing strict matching. TherankHMT, a relatively expensive
integer operation, requires co-location of image and template pixels, but eases the constraint on the
number of matches. The rank HMT and the BHMT can also be combined into therankBHMT, in
which a match is accepted if only a given number of template pixels are within a given distance of
the nearest image pixel. In the sequel, we concentrate on theBHMT, but we give one example of
the use of therank BHMT.

2 Blur HMT

2.1 Basic definitions

We are strictly interested in the discrete case of sets and functions defined onZZ2, although exten-
sions can be made to the continuous case or higher dimensions. The basic morphological opera-
tions areerosionanddilation. The erosion of a binary imageX by a structuring element (SE)B is
the set operation defined byX 	B = \b2BX�b = fx 2 ZZ2 j Bx � Xg (1)

whereX�b is the translation of imageX by�b. The second definition states that erosion generates
a set with a non-empty result at every location where the translate ofB fits entirely withinX. The
dilation of an imageX is defined
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X � B = [b2BXb = [x2XBx = fx+ b 2 ZZ2 j x 2 X; b 2 Bg (2)

The first and second definitions state that dilation generates a set composed of the union of trans-
lations ofX by elements inB, andv.v. Note that	 and� are not the original definitions of
Minkowski subtraction and addition, respectively, which require an inversion of the SE about its
center[12].

The HMT is a morphological template matcher whose definitionis based on the erosion
operator[12]. The HMT of a binary imageX by a disjoint pair(�f ; �b) of SEs is defined as the set
transformation X 
 (�f ; �b) = (X 	 �f) \ (XC 	 �b) (3)

whereXC is the set of BG pixels ofX. The HMT generates a set with non-empty result at every
location where both the FG SE�f fits entirely withinX and the BG SE�b fits entirely withinXC ,
the complement ofX. It is common to speak of the elements in�f ashits, of elements in�b as
misses, and elements not in their union asdon’t-cares.

There are several methods for reducing the sensitivity to boundary noise. We can erode the
template SEs by the blur SEs, or dilate the image by the blur SEs, all prior to the HMT. Eroding
the template removes its boundary pixels from consideration, whereas dilating the image removes
the image boundary pixels. The random noise pixels are also affected: eroding the template opens
up FG and BG holes, so they are not included in the match; dilating the image closes up holes
(i.e., removes salt and pepper) in FG and BG. The results of these operations (followed by the
HMT) differ, and the choice must be made based on the statistics of expected noise. For document
images, the template is expected to be free of salt and peppernoise in situations where it can be
generated by averaging a large set of instances. However, this is not true for the image. Salt and
pepper noise in the image will prevent matches between FG andBG of the template, respectively.
Generally, it is imperative to remove noise pixels from boththe template and image before doing
the HMT. For situations where random noise is more frequent in the image than in the template,
we thus define the BHMT of a binary imageX using the SE pair(�f ; �b) for the template and the
SE pair(�f ; �b) for blur as follows (Also see [1]):X 
 (�f ; �b; �f ; �b) = (X � �f )	 �f \ (XC � �b)	 �b (4)

It can be noted that there is no requirement that the SEs used for blur are symmetric about their
center. Translation of the center of a SE simply results in translation of the dilated image. Also
note that�f and�b are typically non-overlapping. Take for example the case where�f = o, �b = o
and�f \ �b 6= ;: it corresponds to a traditional HMT (no blur), using an overlapping pair of SEs.
In such a case, for any setX, one can easily verify thatX 
 (�f ; �b) = ;: it is indeed impossible
to translate(�f ; �b) in such a way that the translated�f is included inX and the translated�g is
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included inXC . With some blur, that is when sets�f and�b are not reduced to a single pixel, it
is possible to obtain a non-empty BHMT results even when�f \ �b 6= ;. However the practical
interest of using overlapping�f and�b is extremely limited. In the sequel, we typically assume that�f \ �b = ;
2.2 Relation between Hausdorff metric and morphology

The Hausdorff metric is a distance between sets that allows one to define a topology on the set
of all possible sets in the plane[9]. In image terminology, it is a distance between the FG of two
images. The relation between the Hausdorff metric and a pairof blurred template matches has
been noted previously[2], and we present the connection here.

Define the distance function[11] from a pointp to the nearest point in a setX to bed(p;X). Ifp 2 X, thend(p;X) = 0. For two setsT andI, define thedirectedHausdorff distance[6] fromT ) I as the maximum over the pixels in the setT of the distance from the pixel inT to its nearest
pixel in I: D(T; I) = supt2Td(t; I) (5)

For applications to document images, considerT to be a FG template and considerI to be a
windowedsubset of the imageX with support equal to that of the template. Then for each position
in the plane represented byX, there exists a windowed subsetI � X and a directed Hausdorff
distanceD(T; I) betweenT and the co-locatedI. Suppose this distance isÆ. If the setI is dilated
by a disk of radiusÆ, the distance between the dilated set andT will be zero. Consequently, an
erosion of the dilatedI by T will give a non-empty result.

The Hausdorff metricDH is formed symmetrically betweenT andI, as the maximum of the
two directed Hausdorff distances:DH(T; I) = maxfD(T; I); D(I; T )g (6)

Its relation to the blurred match between template and windowed image subset is[2]DH(T; I) = inff� � 0 j T � (I � �B) and I � (T � �B)g (7)

where B is the unit disk SE. This is a symmetrical relation between FG sets. IfI andT are very
similar, small dilations act only to reduce the distance contributions from boundary pixels. Thus,
a single non-boundary noise pixel in eitherI or T can render the Hausdorff distance quite large.

The effects of noise are illustrated by the two sets shown in Fig. 2. Call the sets on the left and
right T andI, respectively. We have chosen the template to be less noisy and slightly eroded with
respect to the image. The directed Hausdorff distances generated by these sets are shown in Fig. 3.
The left frame is the directed distanceD(T(x;y); I) fromT ) I, evaluated at each possible location
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(a) (b)

Figure 2: Two sets used to illustrate effect of noise in Hausdorff distance. One
percent of random noise was added to the set on the right.

Figure 3: Directed Hausdorff distances generated from sets in Fig. 2.The left
and right frames are the directed distancesD(T(x;y); I) andD(I(x;y); T ),
respectively.
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of T with respect toI. Darker values represent shorter distances. The best match, with a distance
of 0, is from the dark region near the center. However, because of the noise inI, the distanceD(I(x;y); T ) from I ) T , shown in the right frame, has a very large value at that location. In fact,
the smallest distances inD(I(x;y); T ) are found near the boundaries, due to clipping. This clipping
effect is another complication of using a windowed directedHausdorff distance from large image
to a small template. For this example, the Hausdorff distanceDH(T; I) is identical to the directed
distanceD(I(x;y); T ) for every translate ofI, because the match between the two sets is entirely
obscured by the noise inI.

2.3 Blur HMT metric

The BHMT produces a binary image representing locations of amatch with a given amount of
FG and BG blurring. In this section, we construct two BHMT-related distance metrics, in analogy
with the Hausdorff metric. These are a generalized distancebetween image and template that,
when thresholded, produce a BHMT for the value of FG and BG blur equal to the threshold.

When the template SET is located on some windowed subsetI of X, its center falls on coor-
dinates(x; y). Label each subsetI of X by this location(x; y). Then form a FG/BG metricDFB,
in analogy toDH , that measures the directed distance between the FG and BG parts of T andI.
The obvious choice for direction isT ) I. Indeed, since the template is supposed to have been
carefully chosen, it should exhibit little boundary pixel noise and no salt-and-pepper noise. Since
the main purpose of the dilation operations used as part of the BHMT operation is to eliminate such
noise before matching (See Eg. 4), it would not make sense to use directionI ) T . For the same
reason, using Hausdorff distanceDH typically does not work as well as this directed blur HMT
metric because of adverse effects of salt-and-pepper type noise. For example, mainly because of
pepper noise, the Hausdorff distance between the two sets ofFig. 2 would be very large. On the
contrary, thedirectedBlur HMT distance from Fig. 2a to Fig. 2b would be dramatically smaller,
which reflects the fact that these two sets simply are different instances of the same letter P.

Accordingly, we now dilate the full imageX and use the(x; y) translate ofT , T(x;y), to compareT with each subsetI of X in computing the metric:DFB(T(x;y); X) = inff� � 0 j T(x;y) � (X � �B) and TC(x;y) � (XC � �B)g (8)= maxfD(T(x;y); X); D(TC(x;y); XC)g (9)

To understand the relation betweenDFB and the BHMT, consider the BHMT in its most simple
form, with two disk SEs of equal radius for the blur and two SEsfor the templates that are set
complements. Setting�f = T and�b = TC, the BHMT is found by thresholdingDFB:X 
 (T; TC ; rB; rB) = f(x; y) 2 ZZ2 j DFB(T(x;y); X) � rg (10)
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The restriction inDFB that the two SEs for the templates are set complements can easily be
relaxed to the disjoint constraint for SEs in the HMT, by requiring only that�f � T and�b � TC .
Then the metricDFB is generalized toDBHMT (�f(x;y); �b(x;y); X) = inff� � 0 j �f(x;y) � (X � �B) and �b(x;y) � (XC � �B)g(11)= maxfD(�f(x;y); X); D(�b(x;y); XC)g (12)

with the thresholding relationX 
 (�f ; �b; rB; rB) = f(x; y) 2 ZZ2 j DBHMT (�f(x;y); �b(x;y); X) � rg (13)

We use the notation “BHMT*” to indicate the special case where the same dilation operator is
used for both FG and BG. For the general case there are two BHMTdistance metrics, one for FG
and one for BG, and the BHMT is derived from from them by thresholding each separately and
AND-ing the results.

For reasons of both efficiency and effectiveness we are usually interested in BHMT where�b 6= �Cf and�f 6= �b. Examples will be given in Sec. 4. In Sec. 2.4, we arrive at a distance metric
generalization for the BHMT by a different route.

WhereasDH has bi-directional symmetry between two FG sets, and ignores the BG,DFB
has FG/BG symmetry but imposes a directionality on the relation between the two setsT andX.
Unlike the Hausdorff metric,DFB andDBHMT are relatively immune to salt and pepper noise
pixels inX. However, they are sensitive to noise in the themplateT , so in practice, one must
ensure that the FG and BG of templateT is free of salt and pepper noise.

Referring to Fig. 4, illustrating the BHMT for the same example as previously shown for Haus-
dorff, the directed distanceD(T; I) in the first frame is identical to the directed HausdorffD(T; I)
in Fig. 3. (Although we now omit the(x; y) label onT , remember that these functions are defined
over the set(x; y) 2 ZZ2 of translates ofT .) However, the second frame gives the directed distance
for the BG,D(TC; IC). The effect of noise on this distance is small: it is determined by thesize
of the noise inI, rather than thedistancefrom the noise toT . The contribution from the BG does
affect the overall match to a small extent, as shown byDFB in the third frame. This is the special
case of the BHMT metricDBHMT where the FG and BG templates are set complements. Because
the BHMT distances are always directedT ) X from the template to the large image, boundary
effects occur only on the boundary of the imageX.

Geometrically, the BHMT as we have defined it has the following interpretation: the “blur
dilations” of imageX and its complementXC create a halo of pixels near image boundaries. This
halo can be regarded as the “don’t care” region of imageX, and one of its nice characteristics is
that it typically contains all the salt and pepper pixels. Ina BMHT operation based on templateT ,
a match is obtained when the FG of the template is located on FGpixels of the image or on “halo
pixels”, and when the BG of the template is located on BG pixels of the image or on “halo pixels”.
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Figure 4: BHMT distances generated from sets in Fig. 2. The first and second
frames are the directed distancesD(T; I) andD(TC ; IC), respectively.
The third frame isDFB, the maximum of the two directed distances.

In other words, this BHMT operation introduces a way to use “don’t care” pixels in the image
as well as in the template used for matching. As such, it is a natural extension of the traditional
hit-miss operation.

2.4 Blur HMT metric derived from distance function

Let us now consider a templateT and a binary imageX. For each translationT(x;y) of this template
we are interested in computing the directed Hausdorff distanceD(T(x;y); X) between the translated
template andX. This Hausdorff distance is equal to the smallest isotropicdilation size ofX such
thatT(x;y) is included in this dilated image. Specifically, ifB represents the3� 3 isotropic ball of
the 8-connected distance function (3� 3 square), we can writeD(T(x;y); X) = minfn � 0 j T(x;y) � (X � nB)g (14)

whereX � nB represents the n-fold dilation ofX by B, or equivalently the dilation ofX by a(2n+ 1)� (2n+ 1) square structuring element, whose center is located on its geometric center.
Consider now for any pixel(x; y) the following distance function:dX(x; y) = minfn � 0 j (x; y) 2 (X � nB)g (15)

This distancedX is simply a traditional distance function computed on the background ofX: it
assigns to each pixel its 8-connected distance to the nearest pixel ofX. Obviously, any pixel(x; y)
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included inX is given a value of 0 by this distance function. See [11, 13] for more information on
distance funtions and their use in morphology.

Putting together the previous two equations we can write:D(T(x;y); X) = maxfdX(i; j) j (i; j) 2 T(x;y)g (16)

In other words, the directed Hausdorff distance fromT(x;y) toX can be obtained by extracting the
maximal value of distance functiondX over pixels(i; j) belonging to the translated templateT(x;y).
Therefore: D(T(x;y); X) = (dX � T )(x; y); (17)

that is, the directed Hausdorff distance between templateT translated to pixel(x; y) is equal to the
value of the grayscale dilation of distance functiondX by templateT at pixel(x; y).

The benefits of Equation (17) are numerous. First, it provides us with a computationally attrac-
tive method to compute a map of the quality of directed Hausdorff match at each pixel location: in
this map, the pixels with value 0 correspond to locations where the translated template exactly fits
inside imageX, pixels with value 1 are the locations where the template fitsinside a dilation of
size 1 ofX, etc. Second, looking at this map as a grayscale image, a number of techniques can now
be used to extract its local minima, which provide us with thelocation of the local best matches of
the template. In addition, the same method can be used withTC andXC , thereby providing a map
of the matches between template complement and image complement.

We can one step further: to improve the “granularity” of thismetric and speed up the algorithm
significantly, we propose to use an asymmetric distance function in equation (17). Instead of
defining it based on a3 � 3 structuring elementB, use a2 � 2 square with the center of the
structuring element at the upper-left. UsingS for distance functions has two main advantages:� The distance function based onS can be computed in a single raster-order pass through

imageX instead of the 2-passes required by traditional distance functions. See [14] for
more details on this asymmetric distance and its use in fast morphological algorithms.� The granularity of Hausdorff distance measurements is improved by a factor of 2. In the
“match map” obtained through application of equation (17) using this asymmetric distance,
all the pixels with an odd value2p�1 correspond to cases where a dilation with a(2p)�(2p)
square provided the Hausdorff match. Using the distance based on3 � 3 elementB, one
would not be able to differentiate between these matches andthe lower-quality matches
where a dilation by(2p+ 1)� (2p+ 1) was required for the match.

However, one caution in using such a non-symmetric dilationis that the results are shifted by one
pixel with respect to the ones obtained using a symmetric dilation. The left and right frames of
Fig. 5 show this distance function for the two sets in Fig. 2.
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Figure 5: Distance function generated from the left and right sets in Fig. 2, re-
spectively.

Now, distanceDBHMT requires taking the maximum of two such directed distances,one com-
puted for the FG and one for the BG. Because the distance function is asymmetric, thelocationof
the result is translated to the SouthEast, relative toX, by an amount equal to the distance function
itself. ThresholdingDBHMT with some valuer generates the identical set as using blur dilation
with anr + 1� r + 1 SE on BG and FG before the HMT.

This set of relations is illustrated in Fig. 6, which shows the sequence of operations that gen-
erate BHMT distance metrics and BHMT images. We start with the imageX and FG and BG
templates. Grid spacings of 2 inx andy directions are used for generating the FG and BG tem-
plates. In the FG, the distance function is found forX, and dilated with the FG template, giving
the FG directed distance metric. The dual process in the BG yields the BG directed distance met-
ric. The maximum of these gives the BHMT* metric, and for thisexample it is possible to find
a threshold that yields a single match in the BHMT* set. The same result can be derived using
the threshold individually on the FG and BG metrics, and AND-ing the result. With the threshold
chosen, it should be noted that the thresholded FG metric yields matches in two locations, one of
which is between the template and the “g” in the image. This match was not seen in the BG, which
removed it from the BHMT. Details of the BHMT* metric are shown in Fig. 7.

In the general case, one would choose different threshold values (blur SEs) in FG and BG, in
order to make the matching process more robust. This is the difference between the BHMT and
the BHMT*. When an asymmetric distance function is used, which is analogous to the use of
different asymmetric SEs for FG and BG blur, the thresholdedbinary images, which have different
translations of the match with respect to the image, must be re-aligned before being AND-ed.
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Figure 6: Sequence of operations that generate BHMT distance metricsand
BHMT images.
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Figure 7: Detail of BHMT* metric for example in Fig. 6

3 Efficient implementations

Our interest is in finding relatively efficient implementations of the BHMT that are effective at
locating matches without a large number of false positives.For character recognition, for exam-
ple, the purpose is not to use the best possible pattern matchers, such as those used to estimate
probabilities for templates in a maximum likelihood calculation[7]. Instead, we might want in-
formation that is good enough to be used as a heuristic for narrowing the search space for more
computationally-intensive methods that do a better job of identifying characters. The rank opera-
tions, such as the rank BHMT, are less efficient than the BHMT because they require two (integer)
convolutions by SEs, followed by thresholding. The BHMT uses only boolean operations.

We now give two approaches to the efficient use of the BHMT for identifying text characters
in an image given a template.

3.1 Subsampled BHMT

To improve the efficiency in a direct implementation of the BHMT, it is possible to� Scale down both image and template. Because we match all template pixels at each image
position, the total number of pixels to be matched varies as the fourth power of the scaling
parameter. The actual reduction in computation will be between the second power and the
fourth power, depending on the implementation.� Subsample the template. Suppose each template is subsampled by imposing a regular grid,
with subsampling factorsnx andny. This has two effects. First, it decreases the computation
required. The reduction varies from approximatelyny to the productnx � ny, depending on
the implementation. The second effect is that the subsampling tends to reduce the overall
template dimensions, effectively augmenting the blur in the image.
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The template can also be subsampled by choosing a random subset of template pixels, rather
than a rectangular grid, but for a given number of template pixels chosen, the matching is sig-
nificantly more accurate when a rectangular grid is chosen. Results using rectangular subsampled
gridding of the template are given in Sec. 4, where it will be seen that some choices of subsampling
greatly improve the results.

The first step is to perform the blur dilations on both the FG and BG of the image. This can
then be used for a multiplicity of templates. The BHMT can be implemented in several ways. For
fully parallel methods, each erosion can be formed separately by the usual set of translations and
ANDs, where the unit of operation can be anything from the pixel to the entire image. The BHMT
results by taking the intersection of the FG and BG results.

Matches of a template to a character in the image typically succeed at more than one(x; y)
location. So that we do not over-count the matches, after theBHMT it is necessary to identify the
matches by labelling the 8-connected components in the image. For the sparse BHMT images, this
is relatively fast compared to the BHMT itself.

3.2 Truncated BHMT

There is another implementation of the BHMT that is faster, somewhat serialized, and largely
circumvents the labelling process itself. The idea is to truncate the matching process in each
location at the first instance of failure. Each template can be composed of an array of words, with
each word representing the pixels in a template row. Supposeboth FG and BG templates are to be
tested at some location (x,y). Choose the FG template and align its first row with the image to test
for a match. (The test requires only three boolean operations: AND between template and image;
XOR between this result and the template; test for 0.) If a line match is found, proceed to the next
template row. Whenever a line match is not found, quit the process at (x,y) and move to the next
image location. If a full FG match is found, repeat with the BGtemplate. If both matches succeed,
record the location (the labelling process).

Matches to a single image feature typically occur contiguously within some region that is
comparable to or smaller than the blur size. The serial aspect is required to avoid recording multiple
positions for an image feature that has already been matched. When a match occurs, move several
pixels away before looking for the next match. For the same reason, when scanning successive
image lines, it is useful to avoid regions where a match was found proximally on lines above.
Truncation of the matching process reduces the computationtime by a factor proportional to the
number of lines in the FG and BG templates that have ON pixels.

The rank BHMT defined earlier in the paper can provide a finer control over the matching. The
approach described in the previous paragraph also providesan efficient implementation of the rank
BHMT. Rather than testing for zero, count the ON pixels in thetemplate line that are OFF in the
image. Accumulate this sum over succesive template lines until either the rank threshold for that
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template is exceeded or the full template is matched. Do thisfor both FG and BG, which generally
have different thresholds. As in the BHMT, avoid searching for matches in the vicinity of any
location where a full match has already been found.

The efficiency of the truncated approach to the BHMT can be estimated within a factor of two or
so, depending on implementation details and the hardware. For most locations of the template(s),
the match will fail on the first line, requiring about 10 machine instructions (MIs). Suppose on
average that 20 MIs are required for each(x; y) location. A 400 MIPS machine can then match
20 million positions/second. For a document image where thevertical location of text baselines
is known within�2 pixels, and where the textline width is 2000 pixels, matchesare required at
10,000 positions for each textline. For a full page with 50 textlines, the matching time is about 25
milliseconds.

3.3 Use of truncated rank BHMT

The matching operation of the rank BHMT, performed in a truncated fashion and only on a small
subset of image locations, can be used to build an efficient JBIG2 encoder for binary images.
JBIG2 is a lossy encoding where similarly-shaped connectedcomponents are replaced by a single
representative template and a set of locations in the image where this template is to appear. The
JBIG2 standard specifies the file format, but not the encodingmethod.

The basis of the JBIG2 encoder is an unsupervised clusteringprocedure, including the shape-
matching algorithm. Consider a two-pass method, where the image is pre-segmented into 8-
connected components. In the first pass, each component is examined sequentially to determine
if it is sufficiently similar to the representative of an existing class, and if not, it becomes the rep-
resentative of a new class. The comparison is done using a truncated version of the rank BHMT,
where both the template and the image component to be compared are of comparable size. To
reduce computation, it is preferable to evaluate the match at just one relative location of template
and image. This location can be chosen by aligning the centroids of the two images[10]. With
the rank BHMT, the FG and BG of the image are dilated and the FG and BG of each template of
similar dimensions are tested in a truncated way, as described in Sec. 3.2. Two thresholds, for FG
and BG outliers, are set for each template. A template is considered to match an image component
if both the FG and BG outliers fall below their thresholds. Ifmore than one template matches an
image component, the one with the smallest number of outlierpixels (i.e., the best fit) should be
used.

Once the initial clustering is made, the instances within each cluster are combined, by again
aligning the centroids, to make a less noisy template. Thesetemplates are then used for the second
pass. All image components are sequentially compared with the new templates, and the best fit
is chosen. If an image component does not match any template,it is used as the template for a
new class, as in the first pass. The amount of image distortion, produced by the substitution of
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the templates for each instance in the class, is controlled by the blur size and the thresholds. The
advantage of the rank BHMT over the rank Hausdorff is evidenced in the second pass, where the
template noise is much less than the noise in the image components. As we have seen previously,
small salt and pepper noise in the image components is removed by the dilations, so the thresholds
can be set lower for rank BHMT than for rank Hausdorff.

4 Illustrative results for BHMT

In this section, the use of the BHMT for matching image characters is briefly explored. A number
of parameters can be varied independently: the FG and BG blurof the image, thex andy grid
subsampling of the template, and scale reduction of both image and template.

Figure 8: Gridded FG templates, for (nx, ny) varying from (1,1) in the upper-left
template to (5,5) in the lower-right template. Grid spacingnx increases
to right; ny increases downward.

To demonstrate the effect of blur and template gridding, an instance of the character “a” is
chosen at random from the image at the top of Fig. 9, and is subsampled on a regular grid. A set
of 25 gridded FG templates is shown in Fig. 8, where thenx subsampling increases to the right
(from 1 to 5), and theny subsampling increases downward. There is another set (not shown) for

17



Figure 9: Top: Example image. Bottom: characters matched by the BHMT for
the templates in Fig. 8 (and the BG templates as well) have been high-
lighted.
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Blur 2,2 Blur 3,3 Blur 4,4 Blur 2,4 Blur 2,5 Blur 4,2nx ny nmiss nfp nmiss nfp nmiss nfp nmiss nfp nmiss nfs nmiss nfp
1 1 84 0 19 0 4 0 8 0 4 0 83 0
1 2 80 0 10 0 0 32 1 0 1 0 77 0
1 3 71 0 16 0 4 0 6 0 2 0 68 0
1 4 65 0 16 0 4 1 4 0 0 0 64 0
2 1 80 0 5 0 0 1 0 0 0 0 79 0
2 2 70 0 1 1 0 74 0 0 0 0 69 0
2 3 54 0 4 0 0 11 0 0 0 0 53 0
2 4 46 0 4 0 0 54 0 0 0 0 46 0
3 1 65 0 1 0 0 15 3 0 3 0 61 0
3 2 47 0 0 0 2 130 0 0 0 0 43 0
3 3 55 0 0 1 0 150 0 0 0 5 51 0
3 4 14 0 0 31 13 328 0 0 0 33 14 16
4 1 39 0 0 0 - - 4 0 4 0 34 0
4 2 0 0 0 32 - - 0 0 0 3 0 168
4 3 16 0 0 21 - - 1 0 1 6 9 100
4 4 1 0 6 193 - - 0 0 1 45 11 609

Table 1: Use of BHMT to identify 88 instances of the character “a”, using a tem-
plated derived by subsampling one of those instances. For text of this
size and thickness, the most stable region for matches is with with pa-
rameters near FG and BG blurs(�f ; �b) = (2; 4) and and grid spacings(nx; ny) = (2; 2). For each set of FG/BG blurs, the numbers of misses
and false positives are given for different grid spacings.

the BG templates. In the upper image in Fig. 9, there are 88 instances of the character “a”. These
are highlighted in the bottom image, having been identified by a BHMT using the blur parameters(�f ; �b) = (2; 4) and grid spacings(nx; ny) = (2; 2). With this combination, as with several others,
all instances were identified and no false positives were found.

Results for five combinations of FG/BG blur factors and sixteen grid subsamplings are shown in
Table 1. For each blur factor pair, the numbers of misses and false positives are given. For example,
the two columns labeled “Blur2,4” used(�f ; �b) = (2; 4). With strict matching parameters (fine
gridding, small dilation) there are no false positives and asignificant number of misses. A few false
positives are seen for Blur3,3, particularly for largernx. With Blur4,4, the number of false positives
is significantly increased; this amount of dilation removesthe differentiation of the “a”s from other
similar characters. A few intermediate combinations succeeded in finding all occurrences without
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any false positives. As seen from Table 1, the optimal working region is near the parameters(�f ; �b) = (2; 4) and(nx; ny) = (2; 2).
When FG and BG blur are not equal, there is an asymmetry in the results. Table 1 shows

particular combinations, where the BG blur is larger than the FG blur, that give good matches.
When FG blur is larger, as for Blur4,2, there are typically more misses and more false positives.
The asymmetry exists because the image has large solid whiteareas that can give false positive
matches to all BG templates; consequently, excessive FG dilation contributes significantly to these
errors.

When matching multiple characters in a font and size, an optimum pair of FG and BG blur SEs
can be chosen, and the template grid spacings can be individually optimized for each character,
including use of different grid spacings for FG and BG templates. The BHMT exhibits significant
immunity to random noise. For example, when random noise at the one percent level shown in
(b) of Fig. 2 is added to the image, the numbers of missed and false positive characters from the
BHMT are not significantly changed. The BHMT is typically more computationally efficient with
coarser grid spacing, particularly in the y-direction.

5 Summary

Translationally invariant methods for pattern matching inscanned document images have no de-
pendencies on pixel connectedness in either the image or template. We have focused on the most
efficient techniques, that require only boolean operations. The basic operation, the HMT (which
should be called the Hit-And-Miss transform!), is maximally sensitive to noise inbothFG and BG.

Fortunately, there are ways to increase the noise immunity of the HMT. For extensions that use
only boolean operations (as opposed to linear convolution and rank order filters), and considering
the nature of binary pixel noise in both images and templates, we have argued that the BHMT is
the best choice.

Considerable attention was devoted to distance metrics that can be derived from (special cases
of) the BHMT. We began with the well-known relation between the Hausdorff metric and blurred
template matches, and derived similar metrics for the BHMT.This distance provides a measure of
the goodness of fit of the template at every location in the image. Comparing the Hausdorff and
BHMT mechanisms of action on noisy document images, we showed why (1) the bi-directional
symmetry of Hausdorff is problematic and (2) the uni-directional but FG/BG-symmetric BHMT
provides immunity to both boundary and random pixel noise. An intuitive presentation of these
differences is a primary goal of this paper.

We also showed how the BHMT* metric can be derived in the grayscale regime starting with
distance functions for the FG and BG image. For most sensitivity, we choose an 8-connected
asymmetric function that is generated in one raster scan andincrements the distance to the South
and East. These distance functions are then dilated with theFG and BG templates, and combined
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using the pixelwise Max operator.
The BHMT is useful for binary document image pattern matching tasks. We have shown the

results of an experiment on pattern matching for characters, to illustrate the effects of FG and
BG blur, and of regular subsamplings of the templates. Regular gridding of the templates gives
far better results than using random subsets, for the same number of elements chosen. We also
discussed methods for truncating the matches; this is much more efficient than using full erosions
at every location. These truncation methods are also applicable to rank operations, which can be
designed to have fewer matching failures than the BHMT itself.
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