Implementation Efficiency of Binary Morphology

Dan Bloomberg
Leptonica
ISMM April 2002

Abstract

The efficiency of implementations of binary morphology

Is investigated, using both full image rasterops and word
accumulation methods. All processing speeds are expressed

in a way that is relatively independent of CPU speed and

the sizes of both image and structuring element; namely,
elementary pixel operations per CPU cycle (EPO/cyc). Options
for handling boundary pixels are discussed. It is shown

that use of successive full image rasterops is much slower

than methods where the full structuring element is applied
repeatedly to small parts of the image. Processing speeds of
the former range from about 1 to 3 EPO/cyc, whereas the
latter are typically between 4 and 7 times faster and range
from 3 to 12 EPO/cyc. For small images using rasterops,
vertical operations are about twice as fast as horizontal (3.2
vs 1.6 EPO/cyc); using word accumulation, vertical operations
are only slightly faster than horizontal (12 vs 10 EPO/cyc).
Performance on large images is reduced by a factor of between
2 and 4, due to slow reads and writes to main memory.

1 Implementation efficiency of binary morphology

What???

Binary Morphology? Are you kidding? Everyone knows how to
do that, n’est-ce pas?

Well, yes, it's pretty straightforward. But there are some little
twists along the road that you might find interesting.

Such as?

The boundary conditions are a bit tricky to get exactly right.
The order in which the computations are done, and in which
the results written to the destination, matter significantly. And
the size of the image affects the overall speed as well.

What speeds are attainable?

As you just read in the abstract, with small images, where
most of the image data is in the cache, and using the
destination word accumulation method, up to 12 destination
pixels can be determined for each “care” in the structuring
element in each CPU clock cycle! For a run-of-the-mill 1 GHz
Pentium Ill, that's about 12 billion pixel operations per second.
Less than 1 millisecond for an 8 Mpixel scanned text image.

How do | find out about all this?

The details are in the paper, and all the software is available
at leptonica.com.

2 Implementation efficiency of binary morphology

A bit of history

Haven't people achieved these speeds before, and how hard is
it to do the implementation?

One thing at a time. Let's start with previous work. How
about this: there have been several papers over the past 10
years that work on one pixel at a time, with a pipelined finite
state machine for each different SE, and that take about 100
cycles/pixel, independent of the size of the SE. But this is
very slow (about 1 EPO/cyc for a SE with 100 hits) and

exceedingly complicated to program.
Scratch that. What else?

For very small SEs you can use an exhaustive neighborhood
table lookup, on each foreground pixel. This might be useful
for special operations on sparse images, such as thinning, but
it is also very slow.

What about more general methods?

Well, you can use full image rasterops, where you bitblt the
full image for each “care” in the SE. Similarly, Boomgaard
and Balen implemented a general DWA (destination word
accumulation) method that was not customized to specific

SEs.

3 Implementation efficiency of binary morphology

history, cont.

That is the standard method. What is the drawback?

These run at about the same rate, between 1 and 3 EPO/cyc,
because they share the computational overhead that goes

with the generality. You see, each word that is written to the
destination must be computed by a general routine that figures
out how to compose it from the source image using the shift
given by each “care” in the SE. Full image rasterops do all
words for each “care”; DWA does all “care”s for each word.
The switch is in the order of “summing”: full image rasterops
has the SE “care”s in the outer loop; DWA puts the iteration
over destination words in the outer loop.

Can you speed it up with special hardware?

Yes, to some extent. Recently York et al have used DWA
morphology on a multimedia processor with 64-bit registers,
using DMA to get data between main memory and the
processor. They do a little better than on a standard general
CPU, but not much. The general CPU performance is such
a fast-moving target that it's hard to compete using special
hardware and systems.

4 Implementation efficiency of binary morphology

Making DWA fast

So how do you improve on this?

We get to the implementation part of your question. In
essence, you write special DWA routines for dilation and
erosion for each SE. These routines have, as a fully unrolled
inner loop, exactly what you must do to compose a full
destination word from various source words.

Can you give me an example?

Sure. Here's the inner loop for erosion by a symmetrical
horizontal SE of width 3:

xdptr = (ksptr >> 1) | (x(sptr - 1) << 31) &
*sptr &
(ksptr << 1) | (*(sptr + 1) >> 31);

The source and dest pointers are initialized to the
corresponding words in source and dest images. General
purpose computers do these operations very efficiently.
Including pointer setup, this takes about 12 machine cycles
for each word, because it runs at 7.6 EPO/cyc, or 7.6/32
elementary word operations per cycle, which we divide into
3 elementary operations for this SE to get (3)(32)/7.6
cycles/word.

5 Implementation efficiency of binary morphology

Making DWA easy

That’s very simple. But where’s the code for pixels near the
boundary?

We could write special code for boundary words. But there
are many different cases, depending on the location of the
boundary word and the size and shape of the SE. The code
would bloat out by at least a factor of 10, and things would
get ugly. If you want to do it, be my guest!

But if you have no special boundary code, what do you do,
skip the boundary pixels altogether?

No. We embed the source image in a larger image with a
border of 32 OFF pixels on all sides. We compute destination
words only for the interior, corresponding to the original image.
If we will be using the dest later as a source image for
another morphological operation, we give it a 32 pixel border
as well. At the end of all morphological operations, we remove
any remaining borders.

That's easy, but what is the computational overhead?

Very small. To put a border on the source, you allocate

1 MB for a full page at 300 pixels/inch, and do a fast
memcpy() because with a 32 pixel border, the word boundaries
are aligned for the copy.

6 Implementation efficiency of binary morphology

Comparing full image rasterop and DWA
implementations

How does the specialized DWA method compare with using
full image rasterops?

The best way | can show this is by using the EPO/cyc
criterion. Have a look at two tables. The times depend
strongly on the size of the image. For the small 512x512 pixel
image, we can assume that there are few cache misses. For
the larger images, the smaller rates are due to slow fetches
from main memory.

The first table gives the EPO/cyc for full image rasterops.
The speeds are in the range of 1 - 3 EPO/cyc, and are
independent of the size of the SE and whether the operation
is dilation or erosion, but the vertical operation is a bit faster
than the horizontal one.

Linear structuring element
horizontal vertical
0.25 Mbit 1.6 3.2
1.0 Mbit 1.0 1.5
8.0 Mbit 0.7 0.9

7 Implementation efficiency of binary morphology

comparing, cont.

By contrast, the second table gives the EPO/cyc for our DWA
implementation.

Linear structuring element
3x1|5x1| 7x1| 9x1 | 1x3| 1x9
0.25 Mbit dilation|| 9.6 9.710.8|11.2|12.0|11.8
1.0 Mbit dilation | 4055 66| 7.3| 52| 8.0
8.0 Mbit dilation || 29| 40| 51| 60| 3.2| 6.6
0.25 Mbit erosion | 7.6 | 6.2| 6.9 7.5[12.2|11.8
1.0 Mbit erosion 33/ 44| 48| 59| 52| 8.4
8.0 Mbit erosion 27|35 45| 53| 32| 6.6

Here the speeds are in the range of 3 - 12 EPO/cyc. They
differ a bit for erosion and dilation for horizontal SEs, but not
for vertical SEs. Also for horizontal SEs, use of longer SEs

is more efficient, particularly for larger images where memory
fetches can be amortized over more elementary operations.
The DWA shows the same deterioration in performance with
image size as full image rasterops.

Typically, DWA is about 4 times faster than full image
rasterops. And | should add that all possible efficiencies

have been used in the rasterop implementation; it cannot be
significantly improved. We use packed data, high-level clipping,
and special case the code when source and dest are 32-bit
aligned. But you just can’'t beat the unrolled loops in DWA,
plus the fact that rasterop requires extra masking to compose
words from partial words.

8 Implementation efficiency of binary morphology

Making DWA correct

OK. Suppose you write DWA code for a morphological
operation using some SE. How do you know that you haven’t
made a mistake?

A fair question. Remember, we also have a general
implementation of binary morphology with full image rasterops.
We just do the operation on some large image with each
method, XOR the results, and check that all pixels are OFF.

And are the results exactly the same?

Yes, if you handle the boundary conditions in the same way.
For the rasterop implementation, we don't need to embed the
source in a larger image because we clip each rasterop to
image boundaries. But getting the rasterop erosion correct is a
little tricky. Remember, with DWA we’'re pulling OFF pixels in
from the border. To do the equivalent with rasterop, you need
to zero (set to OFF) those same pixels. The number on each
edge depends on the maximum distance of a “care” from the
SE center on the corresponding side of the SE.

Corresponding side??

Suppose the SE has 2 hits, one on the center and one 2
pixels to the left. The erosion does a full image rasterop with
a shift of 2 pixels to the right. This leaves 2 pixels on the
left edge of the dest that must be zeroed.

9 Implementation efficiency of binary morphology

Going for the holy grail: fast and easy

But for larger SEs, isn’t it a lot of work to write that inner
code, and do it correctly.

Yes, we can check that the operation is correct, but who
wants to write erosion code such as this, for a simple diagonal
line of length 57 (wpls2 = 2 * wpls)

*dptr = ((x(sptr - wpls2) << 2) | (x(sptr - wpls2 + 1) >> 30))&
((x(sptr - wpls) << 1) | (*(sptr - wpls + 1) >> 31)) &
xsptr &
((x(sptr + wpls) >> 1) | (x(sptr + wpls - 1) << 31)) &
((x(sptr + wpls2) >> 2) | (x(sptr + wpls2 - 1) << 30));

And things get rapidly worse for larger elements, such as
non-separable balls.

What we really want is the “holy grail’ of having a
general method (so that it is easy to use, like a rasterop
implementation) that is also very fast (like a SE-specialized
DWA implementation).

10 Implementation efficiency of binary morphology

Making DWA really easy

Can this be done?

Yes, you can write a program that writes the DWA code.
This was once done in special languages like Lisp, and more
recently in interpreted text-handling languages like Perl. But
it's easy to do in C as well.

What is the input to this code-writing routine?

We have a function that takes an array of SEs, which are
in memory, and generates two C files: a high level, simple
interface that you call in your program to do a specific
morphological operation, and a low level interface that
dispatches to the low level implementation for the requested

SE.

How do you avoid namespace conflicts if you link many pairs
of such files?

The generator function takes an integer as a parameter,

that is both used in naming the generated C files and is
embedded in the name of each generated function. To invoke
a morphological operation, you need to know both that
integer, which is in the name of the high level function, and
the name of the SE.

11 Implementation efficiency of binary morphology

Using DWA

Can you give me a practical example of how to use DWA?

Here are the guts of a little C program that computes the
erosion with the above diagonal SE, both with full image
rasterops and DWA, to verify that the results are the same.

int same; /* result: 1 if same; 0 if different */

int index; /* ignored */

PIX *pixs; /* source image in memory */

PIX *pixtl, *pixt2, *pixt3, *pixt4, *pixtb; /* temp images */
SEL *xsel; /* one SE */

SELA xsela; /* array of SEs */

/* a function that returns an array of SEs */
sela = selaAddBasic(NULL);

/* get the desired SE from its name and the array */
selaFindSelByName (sela, "sel_bdp", &index, &sel);

/* erode with full image rasterops */
pixtl = pixErode(NULL, pixs, sel);

/* add border of OFF pixels; erode with SWA; remove border */
pixt2 = pixAddBorder (pixs, 32, 0);
pixt3 = pixFMorphopGen_1(NULL, pixt2, EROSION, "sel_5dp");
pixt4 = pixRemoveBorder (pixt3, 32);

/* compare the results */

pixt5 = pixXor(NULL, pixtl, pixt4);
pixZero(pixt5, &same);

12 Implementation efficiency of binary morphology

Odds and ends

What about the hit-miss operation in DWA?

That is not specifically implemented in the auto-generated
DWA. For now, you need to compose the fg and bg DWA
erosions separately and AND them together. However, the

SE can have both “hits” and “misses”, so it could be added
within the existing framework. If you need this and want help
implementing it, ask me: bloomberg@ieee.org.

I've been asking you a lot of questions. Is there anything
you've left out?

There are some boundary condition issues we didn't cover,
that you should be aware of, such as how the closing can lose
pixels near the boundary. There are also formal definitions

for DWA, as well as for the similar source word accumulation
(SWA) method that is inferior to DWA, in case you want to
see them. These are all discussed in the paper.

Oh, and if you have a Unix system, download the software at
leptonica.com and try it out!

13 Implementation efficiency of binary morphology

Bibliography

R. van den Boomgaard and R. van Balen, “Methods for
Fast Morphological Image Transforms using Bitmapped Binary
Images,” Graphical Models and Image Processing, 54(3), pp.
252-258, 1992.

R. Hack, F. M. Waltz and B. G. Batchelor, “Software
implementation of the SKIPSM paradigm under PIP,” SPIE
Conf. Machine Vision Applications, Architectures and Systems
Integration VI, 3205, pp. 153-162, Pittsburgh, PA, Oct.
1997.

R. M. Haralick, S. R. Sternberg and X. Zhuang, “Image
Algebra Using Mathematical Morphology,” IEEE Trans. Pattern
Recognit. Mach. Intelligence, PAMI-9, pp. 532-550, July
1987.

B. K. Lien, “Efficient implementation of binary morphological
image processing,” Optical Engineering, 33(11), pp.
3733-3738, November 1994,

J. Serra, Image Analysis and Mathematical Morphology, Acad.
Press, 1982.

F. M. Waltz and J. W. V. Miller, “Execution speed
comparisons for binary morphology,” SPIE Conf. Machine

Vision Systems for Inspection and Metrology VIII, 3836, pp.
2-9, Boston, MA, Sept. 1999,

14 Implementation efficiency of binary morphology

bib, cont.

G. York, R. Managuli and Y. Kim, “Fast Binary and Gray-scale
Mathematical Morphology on VLIW Mediaprocessors,” SPIE
Conf. Real-time imaging IV, 3645, pp. 45-55, San Jose, CA,
Jan. 1999.

Glossary

EPQO/cyc: elementary pixel operations per cpu cycle (Note:
in the paper this is written “EPO/Hz", which is technically
incorrect)

SE: structuring element
“care”: a hit or a miss; anything but a “don’t-care” (!)

rasterop:. also called bitblt, it performs a logical operation on
a rectangle of a “dest” image, using the pixel values in that
rectangle and optionally those of a similar sized rectangle in a

“source” image. The operation between the two images can
be any combination of AND, OR, XOR and NOT.

DWA: destination word accumulation

SWA: source word accumulation

15 Implementation efficiency of binary morphology

16

Implementation efficiency of binary morphology

